Сферы применения, принцип работы и критерии выбора датчиков линейного перемещения индуктивного типа

Содержание

Индуктивный датчик положения

Индуктивный датчик приближения. Внешний вид

В промышленной электронике индуктивные, оптические и другие датчики применяются очень широко.

Долго и постоянно имею с ними дело, и вот решил написать статью, поделиться знаниями.

Статья будет обзорной (если хотите, научно-популярной). Приведены реальные инструкции к датчикам и ссылки на примеры.

Итак, что вообще такое датчик. Датчик – это устройство, которое выдаёт определённый сигнал при наступлении какого-либо определённого события. Иначе говоря, датчик при определённом условии активируется, и на его выходе появляется аналоговый (пропорциональный входному воздействию) или дискретный (бинарный, цифровой, т.е. два возможных уровня) сигнал.

Точнее можем посмотреть в Википедии: Датчик (сенсор, от англ. sensor) — понятие в системах управления, первичный преобразователь, элемент измерительного, сигнального, регулирующего или управляющего устройства системы, преобразующий контролируемую величину в удобный для использования сигнал. 

Там же и много другой информации, но у меня своё, инженерно-электронно-прикладное, видение вопроса.

Датчиков бывает великое множество. Перечислю лишь те разновидности датчиков, с которыми приходится сталкиваться электрику и электронщику.

Индуктивные. Активируется наличием металла в зоне срабатывания. Другие названия – датчик приближения, датчик положения, индукционный, датчик присутствия, индуктивный выключатель, бесконтактный датчик или выключатель. Смысл один, и не надо путать. По-английски пишут “proximity sensor”. Фактически это – датчик металла.

Оптические. Другие названия – фотодатчик, фотоэлектрический датчик, оптический выключатель. Такие применяются и в быту, называются “датчик  освещённости”

Емкостные. Срабатывает на наличие практически любого предмета или вещества в поле активности.

Давления. Давления воздуха или масла нет – сигнал на контроллер или рвёт аварийную цепь. Это если дискретный. Может быть датчик с токовым выходом, ток которого пропорционален абсолютному давлению либо дифференциальному.

Концевые выключатели (электрический датчик). Это обычный пассивный выключатель, который срабатывает, когда на него наезжает или давит объект.

Датчики могут называться также сенсорами или инициаторами.

Пока хватит, перейдём к теме статьи.

Индуктивный датчик является дискретным. Сигнал на его выходе появляется, когда в заданной зоне присутствует металл.

В основе работы датчика приближения лежит генератор с катушкой индуктивности. Отсюда и название. Когда в электромагнитном поле катушки появляется металл, это поле резко меняется, что влияет на работу схемы.

принцип работы индуктивного датчика

Поле индукционного датчика. Металлическая пластина меняет резонансную частоту колебательного контура

И схема, содержащая компаратор, выдаёт сигнал на ключевой транзистор или реле. Нет металла – нет сигнала.

Схема индуктивного npn датчика. Приведена функциональная схема, на которой: генератор с колебательным контуром, пороговое устройство (компаратор), выходной транзистор NPN, защитные стабилитрон и диоды

Большинство картинок в статье – не мои, в конце можно будет скачать источники.

Индуктивные датчики приближения применяются широко в промышленной автоматике, чтобы определить положение той или иной части механизма. Сигнал с выхода датчика может поступать на вход контроллера, преобразователя частоты, реле, пускателя, и так далее. Единственное условие – соответствие по току и напряжению.

Работа индуктивного датчика. Флажок движется вправо, и когда достигает зоны чувствительности датчика, датчик срабатывает.

Кстати, производители датчиков предупреждают, что не рекомендуется подключать непосредственно на выход датчика лампочку накаливания. О причинах я уже писал – ток при включении лампы значительно превышает номинальный.

Чем отличаются датчики.

Почти всё, что сказано ниже, относится не только к индуктивным, но и к оптическим и ёмкостным датчикам.

Тут два основных варианта  – цилиндрический и прямоугольный. Другие корпуса применяются крайне редко. Материал корпуса – металл (различные сплавы) или пластик.

Основные размеры – 12 и 18 мм. Другие диаметры (4, 8, 22, 30 мм) применяются редко.

Чтобы закрепить датчик 18 мм, нужны 2 ключа на 22 или 24 мм.

Это то расстояние до металлической пластины, на котором гарантируется надёжное срабатывание датчика. Для миниатюрных датчиков это расстояние – от 0 до 2 мм, для датчиков диаметром 12 и 18 мм – до 4 и 8 мм, для крупногабаритных датчиков – до 20…30 мм.

Подбираемся к схемотехнике.

2-проводные. Датчик включается непосредственно в цепь нагрузки (например, катушка пускателя). Так же, как мы включаем дома свет. Удобны при монтаже, но капризны к нагрузке. Плохо работают и при большом, и при маленьком сопротивлении нагрузки.

2-проводный датчик. Схема включения

Нагрузку можно подключать в любой провод, для постоянного напряжения важно соблюдать полярность. Для датчиков, рассчитанных на работу с переменным напряжением – не играет роли ни подключение нагрузки, ни полярность. Можно вообще не думать, как их подключать. Главное – обеспечить ток.

3-проводные. Наиболее распространены. Есть два провода для питания, и один – для нагрузки. Подробнее расскажу отдельно.

4- и 5-проводные. Такое возможно, если используется два выхода на нагрузку (например, PNP и NPN (транзисторные), или переключающие (реле). Пятый провод – выбор режима работы или состояния выхода.

У всех дискретных датчиков может быть только 3 вида выходов в зависимости от ключевого (выходного) элемента:

Релейный. Тут всё понятно. Реле коммутирует необходимое напряжение либо один из проводов питания. При этом обеспечивается полная гальваническая развязка от схемы питания датчика, что является основным достоинством такой схемы. То есть, независимо от напряжения питания датчика, можно включать/выключать нагрузку с любым напряжением. Используется в основном в крупногабаритных датчиках.

Транзисторный PNP. Это – PNP датчик. На выходе – транзистор PNP, то есть коммутируется “плюсовой” провод. К “минусу” нагрузка подключена постоянно.

Транзисторный NPN. На выходе – транзистор NPN, то есть коммутируется “минусовой”, или нулевой провод. К “плюсу” нагрузка подключена постоянно.

Можно чётко усвоить разницу, понимая принцип действия и схемы включения транзисторов. Поможет такое правило: Куда подключен эмиттер, тот провод и коммутируется. Другой провод подключен к нагрузке постоянно.

Ниже будут даны схемы включения датчиков, на которых будет хорошо видно эти отличия.

Какой бы ни был датчик, один из основных его параметров – электрическое состояние выхода в тот момент, когда датчик не активирован (на него не производится какое-либо воздействие).

Выход в этот момент может быть включен (на нагрузку подается питание) либо выключен. Соответственно, говорят – нормально закрытый (нормально замкнутый, НЗ) контакт либо нормально открытый (НО) контакт. В иностранной аппаратуре, соответственно – NС и NО.

То есть, главное, что надо знать про транзисторные выходы датчиков – то, что их может быть 4 разновидности, в зависимости от полярности выходного транзистора и от исходного состояния выхода:

  • PNP NO
  • PNP NC
  • NPN NO
  • NPN NC

Контакты датчиков также могут быть с задержкой включения или выключения. Про такие контакты также сказано в статье про приставки выдержки времени ПВЛ. А почему датчики, отвечающие за безопасность, должны быть обязательно с НЗ контактами – см. статью про Цепи безопасности в промышленном оборудовании.

Кстати, если Вам вообще интересно то, о чем я пишу, подписывайтесь на получение новых статей и вступайте в группу в ВК!

Это понятие относится скорее к исполнительным устройствам, которые подключаются к датчикам (контроллеры, реле).

ОТРИЦАТЕЛЬНАЯ или ПОЛОЖИТЕЛЬНАЯ логика относится к уровню напряжения, который активизирует вход.

ОТРИЦАТЕЛЬНАЯ логика: вход контроллера активизируется (логическая “1”) при подключении к ЗЕМЛЕ. Клемму S/S контроллера (общий провод для дискретных входов) при этом необходимо соединить с +24 В=. Отрицательная логика используется для датчиков типа NPN.

ПОЛОЖИТЕЛЬНАЯ логика: вход активизируется при подключении к +24 В=. Клемму контроллера S/S необходимо  соединить с ЗЕМЛЕЙ. Используйте положительную логику для датчиков типа PNP. Положительная логика применяется чаще всего.

Существуют варианты различных устройств и подключения к ним датчиков, спрашивайте в комментариях, вместе подумаем.

Продолжение статьи – здесь >>>. Во второй части даны реальные схемы и рассмотрено практическое применение различных типов датчиков с транзисторным выходом.

• Autonics_PR / Индуктивные датчики приближения. Подробное описание параметровэ, pdf, 135.28 kB, скачан: 2839 раз./

• Autonics_proximity_sensor / Каталог датчиков приближения Autonics, pdf, 1.73 MB, скачан: 1635 раз./ • Omron_E2A / Каталог датчиков приближения Omron, pdf, 1.14 MB, скачан: 2134 раз./ • ТЕКО_Таблица взаимозаменяемости выключателей зарубежных производителей / Чем можно заменить датчики ТЕКО, pdf, 179.92 kB, скачан: 1635 раз./ • Turck_InduktivSens / Датчики фирмы Turck, pdf, 4.13 MB, скачан: 2183 раз./ • pnp npn / Схема включения датчиков по схемам PNP и NPN в программе Splan/ Исходный файл., rar, 2.18 kB, скачан: 3345 раз./

• Алейников А.Ф. Гридчин В.А. Цапенко М.П. Датчики / Алейников А.Ф. Гридчин В.А. Цапенко М.П. Датчики. Рассмотрены все виды датчиков — теория и практика, pdf, 13.21 MB, скачан: 1791 раз./Понравилось? Поставьте оценку, и почитайте другие статьи блога!

Принцип действия. В основе работы индуктивных датчиков частоты вращения лежит явление электромагнитной индукции. Датчики выполнены в виде катушек с магнитными сердечниками. При прохождении под сердечником зубца ферромагнитного диска (например, зубца венца маховика коленчатого вала двигателя) магнитный проток датчика изменяется, и в катушке датчика индуцируется электродвижущая сила. Амплитуда импульсов зависит от частоты вращения коленчатого вала и зазора между сердечником и зубцом маховика

Индуктивные преобразователи имеют множество различных конструкций:

а) индуктивный преобразователь переменной длиной воздушного зазора δ.

Характеризуется нелинейной зависимостью L = f(δ).

Такие преобразователи обычно применяют при перемещениях якоря на 0,01 — 5 мм.

б) индуктивный преобразователь с переменным сечением воздушного зазора. Имеет значительно меньшую чувствительностью, но линейную зависимость L = f(δ).

Эти преобразователи используют при перемещениях до 10 — 15 мм.

в) индуктивные преобразователи дифференциальные преобразователи, в которых под воздействием измеряемой величины одновременно и притом с разными знаками изменяются два зазора электромагнитов.

Имеют более высокую чувствительность, меньшую нелинейность характеристики преобразования, испытывают меньшее влияние внешних факторов.

Области применения индуктивных датчиков.

1. Широкое применение индуктивные датчики находят в промышленности для измерения перемещений и покрывают диапазон от 1 мкм до 20 мм.

2. Для измерения давлений, сил, уровней расхода газа и жидкости и т. д. В этом случае измеряемый параметр с помощью различных чувствительных элементов преобразуется в изменение перемещения и затем эта величина подводится к индуктивному измерительному преобразователю.

Достоинства индуктивных датчиков:

— простота и прочность конструкции, отсутствие скользящих контактов;

— возможность подключения к источникам промышленной частоты;

— относительно большая выходная мощность (до десятков Ватт);

— значительная чувствительность.

Недостатки индуктивных датчиков:

— точность работы зависит от стабильности питающего напряжения по частоте;

— возможна работа только на переменном токе.

.

Примеры применения индуктивных датчиков:

1. Датчик положения коленчатого вала:

Датчик положения коленчатого вала установлен на кронштейне около шкива привода генератора (см. Фото-2).

Для генерации импульса синхронизации оборотов коленвала на шкиве отсутствуют два зуба (см.Фото-2 и Рис. 1).

Ocциллoгpамма напpяжения выхoднoгo cигнала иcпpавнoгo датчика пoлoжения кoленчатoгo вала индукциoннoгo типа пpи 1250 oб/мин.

Пpи пoвышении чаcтoты вpащения двигателя, чаcтoта импульcoв также увеличиваетcя.

Ocциллoгpамма напpяжения выхoднoгo cигнала иcпpавнoгo датчика пoлoжения кoленчатoгo вала индукциoннoгo типа пpи 2230 oб/мин.

2. Датчик положения распределительного вала.

3. Датчик скорости движения автомобиля -устанавливается на коробке переключения передач на механизме привода спидометра

4. Датчик крутящего момента (использование эффекта Холла).



Что такое бесконтактный датчик?

Бесконтактные датчики – это такие датчики, которые работают без физического и механического контакта. Они работают через электрическое и магнитное поле,  а также широко используются  и оптические датчики. В этой статье мы с вами  разберем все три типа датчиков: оптические, емкостные и индуктивные, а также в конце проделаем опыт с индуктивным датчиком.  Кстати,  в народе бесконтактные датчики называют также и бесконтактными выключателями, так что не бойтесь, если увидите такое название ;-).

Оптический датчик

Итак, пару слов об оптических датчиках… Принцип срабатывания оптических датчиков показан  на рисунке ниже

Барьерный

Помните какие-нибудь кадры из фильмов, где главным героям приходилось пройти через оптические лучи и не задеть ни один из них? Если луч задевался какой-либо частью тела, срабатывала сигнализация.

Луч излучается посредством какого-либо источника.  А также есть  “лучеприемник”, то есть та штучка, которая принимает  луч. Как только  луча не будет на лучепримнике, то сразу же в нем включится или выключится контакт, который будет уже непосредственно управлять сигнализацией или еще чем-нибудь по вашему усмотрению. В основном источник  луча и лучеприемник, называется лучеприемник  правильно “фотоприемник”, идут в паре.

Очень большой популярностью в России пользуются оптические датчики перемещений фирмы СКБ ИС

В этих типах датчиков есть и источник света и фотоприемник. Они находятся прямо в  корпусе этих датчиков. Каждый тип датчиков представляет из себя законченную конструкцию и используется в ряде станков, где нужна повышенная точность обработки, вплоть до 1 микрометра. В основном это станки с системой Числового Программного Управления (ЧПУ), которые  работают по программе и требуют минимального вмешательства человека. Эти бесконтактные датчики построены по такому принципу

Такие типы датчиков обозначаются буквой “T ”  и называются барьерными.  Как только оптический луч прервался, датчик сработал.

Плюсы:

  • дальность действия может достигать до 150 метров
  • высокая надежность и помехозащищенность

Минусы:

  • при больших расстояниях срабатывания требуется точная настройка фотоприемника на  оптический луч.

Рефлекторный

Рефлекторный тип датчиков обозначается буквой R . В этих типах датчиков излучатель и приемник расположены в одном корпусе.

Принцип действия можно увидеть на рисунке ниже

Свет от излучателя отражается от какого-либо светоотражателя (рефлектора) и попадает в приемник. Как только луч прерывается каким-либо объектом, то датчик срабатывает.  Очень удобен этот датчик на конвейерных линиях при подсчете продукции.

Диффузионный

И последний тип оптических датчиков – диффузионные  – обозначаются буквой D. Выглядеть могут по разному:

Принцип работы такой же, как и у рефлекторного, но здесь свет уже отражается от предметов. Такие датчики рассчитаны на маленькое расстояние срабатывания и неприхотливы в своей работе.

Емкостные и индуктивные датчики

Оптика оптикой, но самые неприхотливые в своей работе и очень надежные считаются индуктивные и емкостные датчики. Примерно вот так они выглядят

Они очень похожи друг на друга.  Принцип их работы связан с изменением магнитного и электрического поля. Индуктивные датчики срабатывают при поднесении к ним какого-либо металла. На другие материалы они  не “клюют”.  Емкостные же  срабатывают почти на любые вещества.

[quads id=1]

Как работает индуктивный датчик

Как говорится, лучше один раз увидеть, чем  сто раз услышать, поэтому проведем небольшой опыт с индуктивным датчиком.

Итак, у нас в гостях индуктивный датчик российского производства

Читаем, что на нем написано

Марка датчика ВБИ бла бла бла бла, S – расстояние срабатывания, здесь оно составляет 2 мм, У1 – исполнение для умеренного климата, IP – 67 – уровень защиты (короче уровень защиты здесь очень крутой), Ub – напряжение,  при котором работает датчик, здесь напряжение может быть в диапазоне от 10 и до 30 Вольт, Iнагр – ток нагрузки, этот датчик может выдать в   нагрузку силу тока до 200 миллиампер, думаю, это прилично.

На развороте бирки схема подключения этого датчика.

Ну что, проверим работу датчика? Для этого цепляем нагрузку. Нагрузкой у нас будет светодиод, соединенный последовательно с резистором с номиналом в 1 кОм. Зачем нам резистор?  Светодиод в момент включения начинает бешено жрать ток и сгорает. Для того чтобы это предотвратить, в цепь ставится последовательно со светодиодом резистор.

На коричневый провод датчика  подаем плюс от Блок питания, а на синий  – минус. Напряжение я взял  15 Вольт.

Наступает момент истины… Подносим  к рабочей зоне датчика металлический предмет, и датчик у нас тут же срабатывает, о чем говорит нам светодиод, встроенный в датчик, а также наш подопытный светодиод.

На другие материалы, кроме металлов, датчик не реагирует. Баночка канифоли для него ничего не значит :-).

Вместо светодиода может использоваться вход логической схемы, то есть датчик при срабатывании выдает сигнал логической единицы, которая может использоваться в цифровых устройствах.

Заключение

В мире электроники эти три  типа датчиков находят все более широкое применение. С каждым годом производство этих датчиков растет и растет. Они используются абсолютно в разных областях промышленности. Автоматизация и роботизация без этих датчиков была бы невозможна. В этой статье я разобрал только простейшие датчики, которые выдают нам только сигнал “включен-выключен” или, если сказать на профессиональном языке, один бит и нформации. Более навороченные типы датчиков могут выдавать различные параметры и даже могут соединяться с компьютерами и другими устройствами напрямую.

Где купить индуктивный датчик

В нашем радиомагазине индуктивные датчики стоят в 5 раз дороже, чем если бы их заказывать с Китая с Алиэкспресса.

Вот здесь можете глянуть разнообразие индуктивных датчиков.

Существует много способов измерения положения, но одной из быстрорастущих технологий является индуктивный датчик положения. Точность, помехоустойчивость и экономическая эффективность являются одними из преимуществ этой технологии. Ниже, описываются некоторые ошибочные представления об индуктивных датчиках положения в сравнении с другими технологиями измерения положения, такими как эффект Холла и магниторезистивные датчики.

Индуктивные датчики используют индукцию для измерения положения

Название может сбивать с толку, но на самом деле индуктивные датчики не измеряют индуктивность. Вместо этого они используют электромагнитную индукцию магнитного поля в металлическом объекте вместе с известными свойствами трансформатора с воздушным сердечником и законом Фарадея для точного определения местоположения возмущения магнитного поля объектом. Это может показаться сложным для многих из нас, кто забыл все, что мы изучали по теории электромагнитного поля в школе. Проще говоря, индуктивные датчики измеряют возмущение магнитного поля проводящего объекта.

Кроме того, это магнитное поле не создается постоянным магнитом, который необходим для датчиков Холла и магниторезистивных датчиков. Оно генерируется первичной обмоткой трансформатора (рисунок ниже).

Две вторичные обмотки используются для обнаружения данного магнитного поля, и, как и в случае с трансформатором, мы используем закон Фарадея для преобразования этого поля в напряжение. Внутри металлического объекта, помещенного в магнитное поле, будут протекать вихревые токи, которые противодействуют магнитному полю, и уменьшают напряженность поля до нуля в объекте. Располагаясь в разных местах, две приемные катушки будут обнаруживать различное напряжение. Положение цели можно рассчитать, просто рассчитав соотношение этих двух напряжений вторичной катушки.

Индуктивные датчики положения имеют большую погрешность

Этот миф легко развеять, потому что индуктивные датчики положения очень точны, особенно при высоких температурах, когда другие системы на основе магнитов имеют проблемы. Основная причина точности индуктивных датчиков положения заключается в том, что они не зависят от нелинейной природы постоянного магнита. Вместо этого они просто «ищут» возмущения самогенерируемого магнитного поля.

Таким образом, погрешности меньше ± 0,1% по всему диапазону измерений могут быть достигнуты при комнатной температуре. Погрешности меньше ± 0,3% достижимы при той же температуре и с изменениями воздушного зазора между объектом измерения и датчиком. Кроме того, полный алгоритм предназначен либо для устранения колебаний температуры, либо для минимизации ее влияния.

Например, индуктивный датчик положения будет возбуждать магнитное поле с частотой от 1 до 6 МГц, при использовании LC генератор. Хотя обе эти величины могут изменяться вместе с температурой, это не влияет на положение.

Причина заключается в том, что вторичные приемные каналы используют синхронную демодуляцию (рисунок ниже), которая является функцией первичного генератора. Этот дрейф не повлияет на амплитуду принимаемых сигналов. Кроме температуры, металлические предметы возле датчика могут влиять на магнитное поле.

В результате требуется определенный уровень калибровки, но калибровка не изменяется в зависимости от температуры. Например, LX3302A от Microchip Technology использует восемь калибровочных сегментов. Кроме того, 13-разрядные аналого-цифровые преобразователи (АЦП) и 32-разрядные процессоры помогают устранить любые ошибки вычисления и квантования, обеспечивая 12-разрядное разрешение на выходе в диапазоне измерений.

Индуктивные датчики положения дорогие

Довольно редко можно получить лучшее из обоих миров — высокую производительность при разумных затратах, но и индуктивные датчики попадают в этот диапазон. В то время как датчики Холла и магниторезистивные датчики требуют, чтобы постоянный магнит был изготовлен с надлежащим допуском и прочностью для получения необходимой точности, индуктивные датчики нуждаются только в «куске металла» в качестве измерительного объекта, сохраняя пользователю цену магнита.

Хотя печатная плата должна быть больше для маршрутизации дорожек датчиков, она обычно стоит значительно дешевле, чем магнит. И если у вас есть дополнительное место на печатной плате, эта часть может быть и вовсе бесплатной. Таким образом, индуктивный датчик положения является более экономичным решением по сравнению с решениями Холла и магниторезистивными сенсорами, поскольку он обеспечивает измерение магнитного поля без магнита.

Индуктивные датчики положения чувствительны к внешнему магнитному полю

Современные автоматы создают больше случайных магнитных полей, чем когда-либо прежде, вызывая проблемы с датчиками Холла и магниторецепторами. Индуктивные датчики положения используют активную демодуляцию, чтобы отфильтровать поля рассеяния (рисунок ниже).

Электромобили следующего поколения могут иметь рабочий ток в несколько сотен ампер, идущих от аккумуляторов к тяговому электродвигателю. Кроме того, большинство автомобилей имеют более трех бесщеточных двигателей постоянного тока (BLDC) для обеспечения движения автомобиля, электронное рулевое управление с усилителем и вспомогательный тормозной двигатель. Все эти системы генерируют магнитные поля рассеяния.

Из-за быстрого нарастания паразитных магнитных полей новые спецификации требуют большего количества испытаний на устойчивость к сильным магнитным полям. В автомобильной промышленности автомобильная электроника в настоящее время подвергается воздействию поля постоянного тока в 4 мТл при оценке электромагнитной совместимости (EMC) и дает ложные показания в любом из критичных для безопасности датчиков — гидроусилитель руля, педаль акселератора, положение тягового электродвигателя.

Прелесть индуктивного определения положения в том, что оно невосприимчиво к этим шумам, потому что оно активно фильтрует только частоту, необходимую для восприятия. Поскольку индуктивные датчики положения не используют магнитный материал, они не воспринимают магнитное поле постоянного тока. Другими словами, закон Фарадея не работает для статического магнитного поля.

Кроме того, описанный выше синхронный демодулятор отфильтровывает другие частоты выше и ниже основной частоты возбуждения, почти так же, как вы можете выбрать одну радиостанцию AM, когда антенна принимает всю полосу AM. Такой же тип фильтрации невозможен при использовании эффекта Холла и магниторезистивных датчиков.

Индуктивное определение положения — новая технология

Индуктивные датчики положения используют печатную плату в качестве сенсора и кусок металла в качестве цели измерения. Хотя это может быть новым способом реализации измерения, технология хорошо известна. Линейный дифференциальный трансформатор напряжения (LVDT) очень близок к индуктивному измерению положения. LVDT будет использовать первичную обмотку и две вторичные обмотки для определения положения металлического вала в роботизированных приложениях (рисунок ниже).

Индуктивные датчики положения используют многие из тех же методов, чтобы уменьшить обмотки до просто печатной платы. Магнитные резольверы, вращающаяся версия LVDT, также используют аналогичные методы. Еще раз, вместо металлической структуры, похожей на трансформатор, индуктивные датчики положения выполняют ту же функцию, которую можно достичь, используя дорожки на печатной плате. Чтобы определить положение, LVDT, резольвер и индуктивные сенсоры принимают отношение двух напряжений, вызванное возмущением магнитного поля проводящим элементом.

Резервные индуктивные датчики требуют вдвое больше места

Важные автомобильные и промышленные приложения часто нуждаются в резервировании питания для обеспечения высочайшего уровня безопасности. Оптимизируя слои печатной платы и некоторые интеллектуальные методы первичной обмотки, двойной датчик не требует двойного пространства на печатной плате. Вместо этого оба датчика могут находиться в одном и том же пространстве печатной платы (рисунок ниже). В этом случае они имеют одно и то же магнитное поле, и при этом обеспечивают гальваническую развязку. Вторичные устройства могут обращаться к двум микросхемам, которые затем выводят в независимую и резервную позиции, что повышает безопасность приложения.

Индуктивные датчики положения могут обрабатывать только небольшие линейные измерения

Индуктивные датчики положения способны измерять линейные перемещения самой разной длины. Наилучшая точность достигается, когда длина датчика близка к приблизительному желаемому диапазону измерения, поэтому выходное разрешение можно масштабировать по кратчайшему расстоянию. Длина датчика может варьироваться от 5 мм до 600 мм и более для практического применения. Любые ограничения по длине связаны со способностью генератора генерировать правильный резонансный LC сигнал. Во всех случаях принцип действия один и тот же: генерируется магнитное поле и обнаруживается возмущение. Линейные измерения являются несомненным преимуществом этой технологии, и чувствительность может быть достигнута с помощью единого принципа измерения во многих практических диапазонах измерений.

Альтернативно, для датчика Холла может потребоваться мультиплексирование нескольких датчиков Холла, когда магнит перемещается из одного места в другое. Кроссоверная обработка мультиплексирования сложна и может зависеть от температур. Индуктивный сенсор не страдает от этой трудности и может быть использован при линейном измерение, которое соответствует требованиям приложения.

Индуктивные датчики положения могут измерять только линейные перемещения

В то время как линейное измерение является определенным преимуществом этого метода, индуктивные датчики положения могут также измерять траектории объекта вращения и измерения движения по дуге с теми же преимуществами более высокой точности и лучшей помехоустойчивости. Педали автомобиля, воздушные или водяные клапаны и положение ротора — все это примеры датчиков, в которых можно использовать индуктивную технологию.

Думайте о поворотном датчике на 360 градусов как о линейном сенсоре, концы которого изогнуты, чтобы они могли соприкасаться друг с другом. Оказывается, что поворотные индуктивные датчики положения являются наиболее точными, потому что генерируемое магнитное поле может быть очень однородным при любом радиусе. Благодаря этой технологии возможны линейные, дуговые и вращательные измерения.

Материал объекта измерения должен быть магнитным

Индуктивный датчик положения обнаруживает изменение магнитного поля, и это магнитное поле возбуждается металлическим объектом, но магнитный материал не требуется. Все, что проводит ток, позволяя протекать индуцированному вихревому току, будет вызывать это возмущение (рисунок ниже). Магнитные материалы, такие как железо, являются токопроводящими, поэтому их также можно использовать. Однако целевой металл будет иметь лучшее расстояние обнаружения и меньший ток питания, если он изготовлен из хорошего проводника, такого как медь, алюминий или сталь.

Индуктивные датчики положения должны иметь строго запрограммированную входную мощность

В автомобиле многие измерительные приложения находятся в модулях, которые соединены с блоками управления двигателя с помощью набора проводов. Для датчика это обычно состоит из линии питания, линии заземления и выходного контакта. Возможность калибровки модуля по ножке питания гарантирует, что дополнительные подключения к плате датчика не требуются, что экономит затраты и уменьшает проблемы при сборке.

Однако для некоторых приложений требуется микроконтроллер. Именно здесь встроенные приложения хотели бы запрограммировать датчик с помощью другого микроконтроллера, а не специальной тестовой системы. Микросхема LX3302A имеет эту функцию и возможность, позволяющую программировать ее через контакты GPIO.

Вы сами себе разработчик

Не так давно для получения хороших результатов требовалось глубокое знание теории магнитных полей и доступ к высококлассному пакету моделирования с конечными элементами или множество проб и ошибок. Сегодня поставщики микросхем предоставляют эту услугу своим клиентам с оценочными платами и наборами, которые переносят вас от концепции к реальному моделированию и трассировки печатных плат. Некоторые поставщики даже предоставляют результаты моделирования, оценивающие ошибку, которую вы будете иметь с датчиком, до тестирования печатной платы. Microchip предлагает эту помощь, чтобы помочь вам с проектами печатных плат.

Приведенные выше 11 мифов показывают, как индуктивные датчики положения сравниваются с датчиками Холла и магниторезистивными датчиками, демонстрируя точность, устойчивость к паразитным магнитным шумам и экономическую эффективность. Готовы ли вы попробовать эту технологию с вашим следующим продуктом для определения положения с помощью искусственного интеллекта?

И короткое видео о принципе работы и устройстве индуктивных датчиков:

Справочник электрика / Электрические аппараты

Индуктивный датчик — это преобразователь параметрического типа, принцип действия которого основан на изменении индуктивности L или взаимоиндуктивности обмотки с сердечником, вследствие изменения магнитного сопротивления RМ магнитной цепи датчика, в которую входит сердечник.

Широкое применение индуктивные датчики находят в промышленности для измерения перемещений и покрывают диапазон от 1 мкм до 20 мм. Также можно использовать индуктивный датчик для измерения давлений, сил, уровней расхода газа и жидкости и т. д. В этом случае измеряемый параметр с помощью различных чувствительных элементов преобразуется в изменение перемещения и затем эта величина подводится к индуктивному измерительному преобразователю.

В случае измерения давлений, чувствительные элементы могут выполняться в виде упругих мембран, сильфонов, и т. д. Используются они и в качестве датчиков приближения, которые служат для обнаружения различных металлических и неметаллических объектов бесконтактным способом по принципу “да” или “нет”.

Достоинства индуктивных датчиков:

  • простота и прочность конструкции, отсутствие скользящих контактов;

  • возможность подключения к источникам промышленной частоты;

  • относительно большая выходная мощность (до десятков Ватт);

  • значительная чувствительность.

Недостатки индуктивных датчиков:

  • точность работы зависит от стабильности питающего напряжения по частоте;

  • возможна работа только на переменном токе.

image

Типы индуктивных преобразователей и их конструктивные особенности

По схеме построения индуктивные датчики можно разделить на одинарные и дифференциальные. Одинарный индуктивный датчик содержит одну измерительную ветвь, дифференциальный – две.

В дифференциальном индуктивном датчике при изменении измеряемого параметра одновременно изменяются индуктивности двух одинаковых катушек, причем изменение происходит на одну и ту же величину, но с обратным знаком.

Как известно, индуктивность катушки:

где W– число витков; Ф – пронизывающий ее магнитный поток; I – проходящий по катушке ток.

Ток связан с МДС соотношением:

Откуда получаем:

где Rm = HL / Ф – магнитное сопротивление индуктивного датчика.

Рассмотрим, например, одинарный индуктивный датчик. В основу его работы положено свойство дросселя с воздушным зазором изменять свою индуктивность при изменении величены воздушного зазора.

Индуктивный датчик состоит из ярма 1, обмотки 2, якоря 3- удерживается пружинами. На обмотку 2 через сопротивление нагрузки Rн подается напряжение питания переменного тока. Ток в цепи нагрузки определяется как:

где rд — активное сопротивление дросселя ; L — индуктивность датчика.

Т.к. активное сопротивление цепи величина постоянная, то изменение тока I может происходить только за счет изменения индуктивной составляющей XL=IRн , которая зависит от величены воздушного зазора Оґ.

Каждому значению Оґ соответствует определенное значение I, создающего падение напряжения на сопротивлении Rн: Uвых=IRн — представляет собой выходной сигнал датчика. Можно вывести аналитическую зависимость Uвых=f(Оґ), при условии что зазор достаточно мал и потоками рассеяния можно пренебречь, и пренебречь магнитным сопротивлением железа Rмж по сравнению с магнитным сопротвлением воздушного зазора Rмв.

Приведем конечное выражение:

В реальных устройствах активное сопротивление цепи намного меньше индуктивного, тогда выражение сводится к виду:

Зависимость Uвых=f(Оґ) имеет линейный характер (в первом приближении). Реальная характеристика имеет вид:

Отклонение от линейности в начале объясняется принятым допущением Rмж<< Rмв. </span>

При малых d магнитное сопротивление железа соизмеримо с магнитным сопротивлением воздуха.

Отклонение при больших d объясняются тем, что при больших d RL становится соизмеримой с величиной активного сопротивления — Rн+rд.

В целом рассмотренный индуктивный датчик имеет ряд существенных недостатков:

  • не меняется фаза тока при изменении направления перемещения;

  • при необходимости измерять в обоих направлениях перемещение нужно устанавливать начальный воздушный зазор и, следовательно, ток I0,что неудобно;

  • ток в нагрузке зависит от амплитуды и частоты питающего напряжения;

  • в процессе работы датчика на якорь действует сила притяжения к магнитопроводу, которая ничем не уравновешивается, и значит вносит погрешность в работу датчика.

image

Дифференциальные (реверсивные) индуктивные датчики (ДИД)

Дифференциальные индуктивные датчики представляет собой совокупность двух нереверсивных датчиков и выполняются в виде системы, состоящей из двух магнитопроводов с общим якорем и двумя катушками. Для дифференциальных индуктивных датчиков необходимы два раздельных источника питания, для чего обычно используется разделительный трансформатор 5.

По форме магнитопровода могут быть дифференциально-индуктивные датчики с магнитопроводом Ш-образной формы, набранные из мостов электротехнической стали (при частотах выше 1000Гц применяются железоникелевые сплавы — пермолой), и цилиндрические со сплошным магнитопроводом круглого сечения. Выбор формы датчика зависит от конструктивного сочетания его с контролируемым устройством. Применение Ш-образного магнитопровода обусловлено удобством сборки катушки и уменьшением габаритов датчика.

Для питания дифференциально-индуктивного датчика используют трансформатор 5 с выводом средней точки на вторичной обмотке. Между ним и общим концом обеих катушек включается прибор 4. Воздушный зазор 0,2-0,5 мм.

При среднем положении якоря, когда воздушные зазоры одинаковы, индуктивные сопротивления катушек 3 и 3′ одинаковы следовательно величины токов в катушках равны I1=I2 и результирующий ток в приборе равен 0.

При небольшом отклонении якоря в ту или иную сторону под действием контролируемой величены Х меняются величины зазоров и индуктивностей, прибор регистрирует разностный ток I1-I2, он является функцией смещения якоря от среднего положения. Разность токов обычно регистрируется с помощью магнитоэлектрического прибора 4 (микроамперметра) с выпрямительной схемой В на входе.

Характеристика индуктивного датчика имеет вид:

Полярность выходного тока остается неизменной независимо от знака изменения полного сопротивления катушек. При изменении направления отклонения якоря от среднего положения меняется на противоположную (на 180°) фаза тока на выходе датчика. При использовании фазочувствительных выпрямительных схем можно получить индикацию направления перемещения якоря от среднего положения. Характеристика дифференциального индуктивного датчика с ФЧВ имеет вид:

Погрешность преобразования индуктивного датчика

Информативная способность индуктивного датчика в значительной мере определяется его погрешностью преобразования измеряемого параметра. Суммарная погрешность индуктивного датчика складывается из большого числа составляющих погрешностей.

Можно выделить следующие погрешности индуктивного датчика:

1) Погрешность от нелинейности характеристики. Мультипликативная составляющая общей погрешности. Из-за принципа индуктивного преобразования измеряемой величины, лежащего в основе работы индуктивных датчиков, является существенной и в большинстве случаев определяет диапазон измерения датчика. Обязательно подлежит оценке при разработке датчика.

2) Температурная погрешность. Случайная составляющая. Ввиду большого числа зависимых от температуры параметров составных частей датчика составляющая погрешность может достичь больших величин и является существенной. Подлежит оценке при разработке датчика.

3) Погрешность от влияния внешних электромагнитных полей. Случайная составляющая общей погрешности. Возникает из-за индуцирования ЭДС в обмотке датчика внешними полями и из-за изменения магнитных характеристик магнитопровода под действием внешних полей. В производственных помещениях с силовыми электроустановками обнаруживаются магнитные поля с индукцией Тл и частотой в основном 50 Гц.

Поскольку магнитопроводы индуктивных датчиков работают при индукциях 0,1 – 1 Тл, то доля от внешних полей составит 0,05–0,005% даже в случае отсутствия экранирования. Введение экрана и применение дифференциального датчика снижают эту долю примерно на два порядка. Таким образом, погрешность от влияния внешних полей должна приниматься в рассмотрение только при проектировании датчиков малой чувствительности и с невозможностью достаточной экранировки. В большинстве случаев эта составляющая погрешности не является существенной.

4) Погрешность от магнитоупругого эффекта. Возникает из-за нестабильности деформаций магнитопровода при сборке датчика (аддитивная составляющая) и из-за изменения деформаций в процессе эксплуатации датчика (случайная составляющая). Расчеты с учетом наличия зазоров в магнитопроводе показывают, что влияние нестабильности механических напряжений в магнитопроводе вызывает нестабильность выходного сигнала датчика порядка, и в большинстве случаев эта составляющая может специально не учитываться.

5) Погрешность от тензометрического эффекта обмотки. Случайная составляющая. При намотке катушки датчика в проводе создаются механические напряжения. Изменение этих механических напряжений в процессе эксплуатации датчика ведет к изменению сопротивления катушки постоянному току и, следовательно, к изменению выходного сигнала датчика. Обычно для правильно спроектированных датчиков , т. е. эту составляющую не следует специально учитывать.

6) Погрешность от соединительного кабеля. Возникает из-за нестабильности электрического сопротивления кабеля под действием температуры или деформаций и из-за наводок ЭДС в кабеле под действием внешних полей. Является случайной составляющей погрешности. При нестабильности собственного сопротивления кабеля погрешность выходного сигнала датчика. Длина соединительных кабелей составляет 1–3 м и редко больше. При выполнении кабеля из медного провода сечением сопротивление кабеля менее 0,9 Ом, нестабильность сопротивления . Поскольку полное сопротивление датчика обычно больше 100 Ом, погрешность выходного сигнала датчика может составить величину . Следовательно, для датчиков, имеющих малое сопротивление в рабочем режиме, погрешность следует оценивать. В остальных случаях она не является существенной.

7) Конструктивные погрешности. Возникают под действием следующих причин: влияние измерительного усилия на деформации деталей датчика (аддитивная), влияние перепада измерительного усилия на нестабильность деформаций (мультипликативная), влияние направляющих измерительного стержня на передачу измерительного импульса (мультипликативная), нестабильность передачи измерительного импульса вследствие зазоров и люфтов подвижных частей (случайная). Конструктивные погрешности в первую очередь определяются недостатками в конструкции механических элементов датчика и не являются специфическими для индуктивных датчиков. Оценка этих погрешностей производится по известным способам оценки погрешностей кинематических передач измерительных устройств.

8) Технологические погрешности. Возникают вследствие технологических отклонений взаимного положения деталей датчика (аддитивная), разброса параметров деталей и обмоток при изготовлении (аддитивная), влияния технологических зазоров и натягов в соединении деталей и в направляющих (случайная).

Технологические погрешности изготовления механических элементов конструкции датчика также не являются специфическими для индуктивного датчика, их оценка производится обычными для механических измерительных устройств способами. Погрешности изготовления магнитопровода и катушек датчика ведут к разбросу параметров датчиков и к затруднениям, возникающим при обеспечении взаимозаменяемости последних.

9) Погрешность от старения датчика. Эта составляющая погрешности вызывается, во-первых, износом подвижных элементов конструкции датчика и, во-вторых, изменением во времени электромагнитных характеристик магнитопровода датчика. Погрешность следует рассматривать как случайную. При оценке погрешности от износа во внимание принимается кинематический расчет механизма датчика в каждом конкретном случае. На стадии конструирования датчика в этом случае целесообразно задавать срок службы датчика в нормальных для него условиях эксплуатации, за время которого дополнительная погрешность от износа не превысит заданной величины.

image

В большинстве случаев выраженные процессы изменения электромагнитных характеристик заканчиваются в течение первых 200 часов после термообработки и размагничивания магнитопровода. В дальнейшем они остаются практически постоянными и не играют существенной роли в общей погрешности индуктивного датчика.

Проведенное выше рассмотрение составляющих погрешности индуктивного датчика дает возможность оценить их роль в формировании общей погрешности датчика. В большинстве случаев определяющими являются погрешность от нелинейности характеристики и температурная погрешность индуктивного преобразователя.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий