Симисторный регулятор мощности: описание принципа работы и сборки устройства

При автоматизации дома или квартиры необходимо управлять электрическими приборами работающими от напряжения 220 вольт. К сожалению контроллер arduino не может коммутировать такое большое напряжение на прямую. Необходим посредник. Первое что приходит на ум — РЕЛЕ.

У данного способа есть и плюсы и минусы. К плюсам можно отнести гальваническую развязку, возможность коммутировать все, что душе  угодно (постоянный или переменный ток, любое напряжение до 250 вольт)

Минусы — дребезг контактов и щёлкает. Не такой большой минус, но он есть.

Как я не раз уже говорил: “Главное — это семья!” и если кому-то из близких не комфортно, необходимо постараться исправить.

После заявления родных о том, что “что-то там щёлкает и пугает…” решил собрать полупроводниковый ключ переменного напряжения. На просторах интернета не составило труда найти подробное описание и схему данного устройства.

Главные действующие герои ключа переменного напряжения — симистор и оптопара.

Симистор сам по себе уже является ключом переменного напряжения, но для управления симистором мы будем использовать оптопару, для того что бы обеспечить гальваническую развязку.

Рассматривая различные варианты я решил взять оптопару MOC3063. Дело в том, что она с детектором перехода нуля коммутируемого напряжения. Другими словами симистор будет открываться и закрываться в тот момент когда синусоида проходит через ноль. Данное свойство позволит продлить жизнь коммутируемым приборам…

Но хватит ходить вокруг да около.

Принципиальная схема:

Исходя из своих потребностей решил делать двух канальный ключ.

Нарисовал плату:

скачать PDF или в формате SprintLayout6 скачать

скачать программу для редактирования печатных плат SprintLayout6

 Изготовил плату старым добрым способом «лазерного утюга» (ЛУТ). Только вместо утюга был использован ламинатор.

Стоимость деталей:

  1. оптопара MOC3063 — 38 руб. х2 шт.
  2. симистор BT138-600 — 30 руб. х2 шт.
  3. резисторы 6 шт. по рублю.
  4. кусок стеклотекстолита фольгированного — бесплатно (ориентировочно 10-15 руб.)
  5. клемники — можно считать бесплатными т.к. уже давно купил их 100500 штук.
  6. хлорное железо, припой и паяльник не считаем.

Итого около 150 руб.

 Плюсы:

  1. полезно для коммутируемых устройств
  2. гальваническая развязка
  3. БЕСШУМНО!

Минусы:

  1. только переменное напряжение

Фото того, что получилось:

Устройства, позволяющие управлять работой электрических приборов, подстраивая их под оптимальные характеристики для пользователя, прочно вошли в обиход. Одним из таких приспособлений является регулятор мощности. Применение таких регуляторов востребовано при использовании электронагревательных и осветительных приборов и в устройствах с двигателями. Схемотехника регуляторов разнообразна, поэтому порой бывает затруднительно подобрать себе оптимальный вариант.

Простейший регулятор энергии

Первые разработки устройств, изменяющие подводимую к нагрузке мощность, были основаны на законе Ома: электрическая мощность равняется произведению тока на напряжение или произведению сопротивления на ток в квадрате. На этом принципе и сконструирован прибор, получивший название — реостат. Он располагается как последовательно, так и параллельно подключённой нагрузке. Изменяя его сопротивление, регулируется и мощность.

Ток, поступая на реостат, разделяется между ним и нагрузкой. При последовательном включении контролируются сила тока и напряжение, а при параллельном — только значение разности потенциалов. В зависимости от материала, из которого изготовлено сопротивление, реостаты могут быть:

  • металлическими;
  • жидкостными;
  • угольными;
  • керамическими.

Согласно закону сохранения энергии, забранная электрическая энергия не может просто исчезнуть, поэтому в резисторах мощность преобразуется в теплоту, и при большом её значении должна от них отводиться. Для обеспечения отвода используется охлаждение, которое выполняется с помощью обдува или погружением реостата в масло.

Реостат — довольно универсальное приспособление. Единственный, но существенный его минус — это выделение тепла, что не позволяет выполнить устройство с небольшими размерами при необходимости пропускать через него мощность большой величины. Управляя силой тока и напряжения, реостат часто используется в маломощных линиях бытовых приборов. Например, в аудиоаппаратуре для регулировки громкости. Выполнить такой регулятор тока своими руками совсем несложно, в большей мере это касается проволочного реостата.

Для его изготовления понадобится константовая или нихромовая проволока, которая наматывается на оправку. Регулирование электрической мощности происходит путём изменения длины проволоки.

Виды современных устройств

Развитие полупроводниковой техники позволило осуществить управление мощностью, используя радиоэлементы с коэффициентом полезного действия от восьмидесяти процентов. Это дало возможность их комфортно применить в сети с напряжением 220 вольт, не требуя при этом больших систем охлаждения. А появление интегральных микросхем и вовсе позволило достичь миниатюрных размеров всего регулятора в целом.

На сегодняшний момент производство выпускает следующие типы приборов:

  1. Фазовые. Используются для управления яркости свечения ламп накаливания или галогенных ламп. Другое их название — диммеры.
  2. Тиристорные. В основе работы лежит использование задержки включения тиристорного ключа на полупериоде переменного тока.
  3. Симисторные. Мощность регулируется вследствие изменения количества полупериодов напряжения, которые действуют на нагрузку.
  4. Регулятор хода. Позволяет плавно изменять электрическую мощность, подаваемую на электродвигатель.

Читайте также:  Изготовление ножа из напильника своими руками в домашних условиях

При этом регулировка происходит независимо от формы входного сигнала. По своему виду расположения приборы управления разделяются на портативные и стационарные. Они могут выполняться как в независимом корпусе, так и интегрироваться в аппаратуру. К основным параметрам, характеризующим регуляторы электрической энергии, относят:

  • плавность регулировки;
  • рабочую и пиковую подводимую мощность;
  • диапазон входного рабочего сигнала;
  • КПД.

Таким образом, современный регулятор электрической мощности представляет собой электронную схему, использование которой позволяет контролировать количество энергии, пропускаемой через него.

Тиристорный прибор управления

Принцип действия такого прибора не отличается особой сложностью. В основном тиристорный преобразователь используется для управления устройствами малой мощности. Типовая схема тиристорного регулятора мощности состоит непосредственно из самого тиристора, биполярных транзисторов и резисторов, устанавливающих их рабочую точку, и конденсатора.

Транзисторы, работая в ключевом режиме, формируют импульсный сигнал. Как только значение напряжения на конденсаторе сравнивается с рабочим, транзисторы открываются. Сигнал подаётся на управляющий вывод тиристора, открывая и его. Конденсатор разряжается и ключ запирается. Так повторяется в цикле. Чем больше задержка, тем в нагрузку поступает меньше мощности.

Преимущества такого типа регулятора в том, что он не требует настройки, а недостаток в чрезмерном нагреве. Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения.

Используется такого типа регулятор для преобразования мощности, подающейся как к бытовым приборам (паяльник, электронагреватель, спиральная лампа), так и к промышленным (плавный запуск мощных силовых установок). Схемы включения могут быть однофазными и трёхфазными. Наиболее применяемые: ку202н, ВТ151, 10RIA40M.

Симисторный преобразователь мощности

Симистор — полупроводниковый прибор, предназначенный для использования в цепи переменного тока. Отличительной чертой прибора является то, что его выводы не имеют разделения на анод и катод. В отличие от тиристора, пропускающего ток только в одну сторону, симистор проводит ток в обоих направлениях. Именно поэтому он используется в сетях переменного тока.

Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Принцип действия основан на фазном управлении, то есть на изменении момента открытия симистора относительно перехода переменного напряжения через ноль. Такое устройство позволяет управлять нагревателями, лампами накаливания, оборотами электродвигателя. Сигнал на выходе симистора имеет пилообразную форму с управляемой длительностью импульса.

Самостоятельное изготовление такого вида приборов проще, чем тиристорного. Широкую популярность получили симисторы средней мощности типа: BT137–600E, MAC97A6, MCR 22−6. Схема регулятора мощности на симисторе с использованием таких элементов отличается простотой изготовления и отсутствия необходимости в настройке.

Фазовый способ трансформации

Сам по себе диммер имеет широкую область применения. Одним из вариантов его использования является регулировка интенсивности освещения. Электрическая схема прибора чаще всего реализуется на специализированных микроконтроллерах, использующих в своей работе встроенную электронную схему понижения напряжения. Из-за этого диммеры способны плавно изменять мощность, но чувствительны к помехам.

Читайте также:  Работа с паяльником для пайки микросхем и радиодеталей

Фазовые регуляторы мощности не стабилизируются с помощью стабилитронов, а в качестве стабилизатора используют попарно работающие тиристоры. Основа их работы лежит в изменении угла открывания ключевого тиристора, в результате чего на нагрузку поступают сигналы с отрезанной начальной частью полупериода, снижая действующую величину напряжения. К недостаткам диммеров относят высокий коэффициент пульсаций и низкий коэффициент мощности выходного сигнала.

При работе диммеров в широком спектре частот возбуждаются электромагнитные помехи. Такие излучения приводят к снижению КПД из-за появления паразитного тока в проводниках. Для борьбы с такими токами в конструкцию добавляются индуктивно-ёмкостные фильтры.

Практические примеры для повторения

Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Такие схемы просты для повторения и могут собираться без использования печатных плат простым навесным монтажом.

Схемы, выполненные самостоятельно, ничем не уступают по работоспособности заводским, так как не требуют настроек и при исправных радиодеталях сразу готовы к использованию. В случае отсутствия возможности или желания изготовить прибор своими руками с «нуля», можно приобрести наборы для самостоятельного изготовления. Такие комплекты содержат все необходимые радиоэлементы, печатную плату и схему с инструкцией по сборке.

Доминирующая схема

Такой прибор проще всего собрать на тиристоре. Работа схемы основана на способности открывания тиристора при прохождении входной синусоиды через ноль, в результате чего сигнал обрезается, и величина напряжения на нагрузке изменяется.

Схема для повторения тиристорного регулятора мощности построена на использовании тиристора VS1, в качестве которого используется КУ202Н. Это радиоэлемент изготавливается из кремния и имеет структуру p-n-p типа. Применяется в качестве симметричного переключателя сигналов средней мощности и коммутации силовых цепей на переменном токе.

Читайте также:  Как сделать ручной культиватор своими руками

При подаче напряжения 220в входной сигнал выпрямляется и поступает на конденсатор C1. Как только значение падения напряжения на C1 сравняется с величиной разности потенциалов, в точке между сопротивлениями R3 и R4 биполярные транзисторы VT1 и VT2 открываются. Уровень напряжения ограничивается стабилитроном VD1. Сигнал поступает на управляющий вывод КУ202Н, а конденсатор C1 разряжается. При возникновении сигнала на управляющем выводе тиристор отпирается. Как только конденсатор разрядится, VT1 и VT2 закрываются, соответственно запирается и тиристор. При следующем полупериоде входного сигнала всё повторяется вновь.

В качестве транзисторов используются КТ814 и КТ815. Время разряда регулируется с помощью R5 и мощность тоже. Стабилитрон используется с напряжением стабилизации от 7 до 14 вольт.

Такой регулятор возможно использовать не только как диммер, но и для управления мощностью коллекторного двигателя. Доминирующая схема может работать при токах до 10 ампер, эта величина напрямую зависит от характеристик используемого тиристора, при этом он обязательно устанавливается на радиатор.

Контроллер нагрева паяльника

Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Приборы для контроля температуры паяльника выпускаются давно. Одним из его видов был отечественный прибор, выпускающийся под названием «Добавочное устройство для электропаяльника типа П223». Он позволял подключать низковольтный паяльник к сети 220В.

Проще всего выполняется регулятор для паяльника с применением симистора КУ208Г.

Силовые контакты подключаются последовательно к нагрузке. Поэтому ток, протекающий через симистор, совпадает с током нагрузки. Для управления ключевым режимом применяется динистор VS2. Конденсатор C1 заряжается через резисторы: R1 и R2. Индикация работы организовывается под средством VD1 и светодиода LED. Из-за того, что для изменения напряжения на конденсаторе требуется время, образуется сдвиг фаз между сетевым и конденсаторным напряжением. Изменяя величину сопротивления R2, регулируется величина фазового сдвига. Чем дольше конденсатор заряжается, тем меньше находится в открытом состоянии симистор, а значит и значение мощности ниже.

Такой регулятор рассчитан на подключение нагрузки с мощностью до 300 ватт. При использовании паяльника с мощностью более 100 ватт симистор следует устанавливать на радиатор. Изготовленная плата с лёгкостью помещается на текстолите размером 25х30 мм и свободно размещается во внутренней сетевой розетке.

Originally posted 2018-07-04 07:13:04.

Тиристоры нашли широкое применение в полупроводниковых устройствах и преобразователях. Различные источники питания, частотные преобразователи, регуляторы, возбудительные устройства для синхронных двигателей и много других устройств строились на тиристорах, а в последнее время их вытесняют преобразователи на транзисторах. Основной задачей для тиристора является включение нагрузки в момент подачи управляющего сигнала. В этой статье мы рассмотрим, как управлять тиристорами и симисторами.

Определение

Тиристор (тринистор) – это полупроводниковый полууправляемый ключ. Полууправляемый – значит, что вы можете только включать тиристор, отключается он только при прерывании тока в цепи или если приложить к нему обратное напряжение.

Он, подобно диоду, проводит ток только в одном направлении. То есть для включения в цепь переменного тока для управления двумя полуволнами нужно два тиристора, для каждой по одному, хотя не всегда. Тиристор состоит из 4 областей полупроводника (p-n-p-n).

Другой подобный прибор называется симистор – двунаправленный тиристор. Его основным отличием является то, что ток он может проводить в обе стороны. Фактически он представляет собой два тиристора соединённых параллельно навстречу друг другу.

Основные характеристики              

Как и любых других электронных компонентов у тиристоров есть ряд характеристик:

1. Падение напряжения при максимальном токе анода (VT или Uос).

2. Прямое напряжение в закрытом состоянии (VD(RM) или Uзс).

3. Обратное напряжение (VR(PM) или Uобр).

4. Прямой ток (IT или Iпр) – это максимальный ток в открытом состоянии.

5. Максимально допустимый прямой ток (ITSM) — это максимальный пиковый ток в открытом состоянии.

6. Обратный ток (IR) — ток при определенном обратном напряжении.

7. Постоянный ток в закрытом состоянии при определенном прямом напряжении (ID или Iзс).

8. Постоянное отпирающее напряжение управления (VGT или UУ).

9. Ток управления (IGT).

10. Максимальный ток управления электрода IGM.

11. Максимально допустимая рассеиваемая мощность на управляющем электроде (PG или Pу)

Принцип работы

Когда на тиристор подают напряжение он не проводит ток. Есть два способа включит его – подать напряжение между анодом и катодом достаточное для открытия, тогда его работа ничем не будет отличаться от динистора.

Другой способ – это подать кратковременный импульс на управляющий электрод. Ток открытия тиристора лежит в пределах 70-160 мА, хотя на практике эта величина, как и напряжение которое нужно приложить к тиристору зависит от конкретной модели и экземпляра полупроводникового прибора и даже от условий, в которых он работает, таких, например, как температура окружающей среды.

Кроме управляющего тока, есть такой параметр как ток удержания – это минимальный ток анода для удержания тиристора в открытом состоянии.

После открытия тиристора управляющий сигнал можно отключать, тиристор будет открыт до тех пор, пока через него протекает прямой ток и подано напряжение. То есть в цепи переменного тиристор будет открыт в течении той полуволны напряжение которой смещает тиристор в прямом направлении. Когда напряжение устремится к нулю, снизится и ток. Когда ток в цепи упадет ниже величины тока удержания тиристора – он закроется (выключится).

Полярность управляющего напряжения должна совпадать с полярностью напряжения между анодом и катодом, что вы наблюдаете на осциллограммах выше.

Управление симистором аналогично хоть и имеет некоторые особенности. Для управления симистором в цепи переменного тока нужно два импульса управляющего напряжения – на каждую полуволну синусоиды соответственно.

После подачи управляющего импульса в первой полуволне (условно положительной) синусоидального напряжения ток через симистор будет протекать до начала второй полуволны, после чего он закроется, как и обычный тиристор. После этого нужно подать еще один управляющий импульс для открытия симистора на отрицательной полуволне. Это наглядно проиллюстрировано на следующих осциллограммах.

Полярность управляющего напряжения должна соответствовать полярности приложенного напряжения между анодом и катодом. Из-за этого возникают проблемы при управлении симисторами с помощью цифровых логических схем или от выходов микроконтроллера. Но это легко решается путем установки симисторного драйвера, о чем мы поговорим позже.

Распространенные схемы управления тиристорами или симисторами

Самой распространенной схемой является симисторный или тиристорный регулятор.

Здесь тиристор открывается после того как на конденсаторе будет достаточная величина для его открытия. Момент открытия регулируется с помощью потенциометра или переменного резистора. Чем больше его сопротивление – тем медленнее заряжается конденсатор. Резистор R2 ограничивает ток через управляющий электрод.

Эта схема регулирует оба полупериода, то есть вы получаете полную регулировку мощности почти от 0% и почти до 100%. Это удалось достичь, установив регулятор в диодном мосте, таким образом регулируется одна из полуволн.

Упрощенная схема изображена ниже, здесь регулируется лишь половина периода, вторая полуволна проходит без изменения через диод VD1. Принцип работы аналогичен.

Симисторный регулятор без диодного моста позволяет управлять двумя полуволнами.

По принципу действия почти аналогична предыдущим, но построена на симисторе с её помощью регулируются уже обе полуволны. Отличия заключаются в том, что здесь импульс управления подаётся с помощью двунаправленного динистора DB3, после того как конденсатор зарядится до нужного напряжения, обычно это 28-36 Вольт. Скорость зарядки также регулируется переменным резистором или потенциометром. Такая схема реализована в большинстве бытовых диммеров.

Интересно:

Такие схемы регулировки напряжения называется СИФУ – система импульсного фазового управления.

На рисунке выше изображен вариант управления симистором с помощью микроконтроллера, на примере популярной платформы Arduino. Симисторный драйвер состоит из оптосимистора и светодиода. Так как в выходной цепи драйвера установлен оптосимистор на управляющий электрод всегда подаётся напряжение нужной полярности, но здесь есть некоторые нюансы.

Дело в том, что для регулировки напряжения с помощью симистора или тиристора нужно подавать управляющий сигнал в определенный момент времени, так чтобы срез фазы происходил до нужной величины. Если наугад стрелять управляющими импульсами – схема работать конечно будет, но регулировок добиться не выйдет, поэтому нужно определять момент перехода полуволны через ноль.

Так как для нас не имеет значения полярность полуволны в настоящий момент времени – достаточно просто отслеживать момент перехода через ноль. Такой узел в схеме называют детектор нуля или нуль-детектор, а в англоязычных источниках “zero crossing detector circuit” или ZCD. Вариант такой схемы с детектором перехода через ноль на транзисторной оптопаре выглядит следующим образом:

Оптодрайверов для управления симисторами есть множество, типовые – это линейка MOC304x, MOC305x, MOC306X, произведенные компанией Motorola и другими. Более того – эти драйверы обеспечивают гальваническую развязку, что убережет ваш микроконтроллер в случае пробоя полупроводникового ключа, что вполне возможно и вероятно. Также это повысит безопасность работы с цепями управления, полностью разделив цепь на «силовую» и «оперативную».

Заключение

Мы рассказали базовые сведения о тиристорах и симисторах, а также управлении ими в цепях с «переменкой». Стоит отметить, что мы не затрагивали тему запираемых тиристоров, если вас интересует этот вопрос – пишите комментарии и мы рассмотрим их подробнее. Также не были рассмотрены нюансы использования и управления тиристорами в силовых индуктивных цепях. Для управления «постоянкой» лучше использовать транзисторы, поскольку в этом случае вы решаете, когда ключ откроется, а когда он закроется, повинуясь управляющему сигналу… Ранее ЭлектроВести писали, почему в современных инверторах используют транзисторы, а не тиристоры. По материалам electrik.info

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.
Симистор с креплением под радиатор
  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

23 апреля 2009

Симисторы (симметричные или двунаправленные тиристоры – триаки или triac) – полупроводниковые ключи, предназначенные для работы в сетях переменного напряжения, проводящие ток в обоих направлениях и имеющие симметричную вольт-амперную характеристику. В большинстве случаев симисторы используются в качестве ключевого регулятора переменного тока, вытеснив применяемые ранее для этого устройства, состоящие из двух встречно-параллельно включенных тиристоров.

На рисунке 1 приведены полупроводниковая структура симистора и квадранты с указанием напряжений на электродах для каждого режима работы.

image

Триак может управляться как положительным, так и отрицательным напряжением между управляющим электродом (затвором) и МТ1 (Main Terminal 1 – основной электрод 1 симистора). Эта особенность позволяет симистору работать во всех четырех секторах. При работе симистора на нагрузку в сети переменного тока 220 В (регуляторы скорости вращения двигателя, регуляторы яркости лампы или диммеры) полярности затвора и основного электрода МТ1 всегда совпадают. Из этого следует, что в таких случаях симисторы работают в первом и третьем квадрантах. При этом параметры коммутации триаков практически одинаковы, а затвор обладает максимальной чувствительностью. Вольт-амперная характеристика переключения для этого случая и основные параметры симистора приведены на рисунке 2.

image

Рис. 2. Вольт-амперная характеристика и основные параметры симисторов

Ток удержания характеризует минимальное значение тока через симистор, при котором он еще находится в открытом состоянии. Если посмотреть на полупроводниковую структуру симистора, то можно убедиться, что этот прибор не может иметь идеальную симметрию характеристики и параметров, поэтому производители не выпускают триаки на очень большие токи, какие достижимы у тиристоров. Кроме того, у симисторов могут отличаться значения токов управления для разных квадрантов (эти параметры приводятся в документации производителя). Основные параметры наиболее популярных симисторов фирмы ON Semiconductor отражены в таблицах 1 и 2. Наименования для бессвинцовых компонентов производитель приводит с окончанием «G» (от слова Green – зеленый или экологически чистый, в данном случае – не содержащий свинца и других вредных веществ).

Таблица 1. Основные параметры симисторов ON Semiconductor малой и средней мощности

Наименование Корпус Iмакс. (А) Uмакс. (В) Iперегруз. (А) IGT (ток затвора), мА (макс.)
Q1 Q2 Q3 Q4
MAC97A6

  image

0,6

400

8,0

5,0

5,0

5,0

7,0

MAC97A8

600

Z0103MA

1,0

600

3,0

3,0

3,0

5,0

Z0107MA

5,0

5,0

5,0

7,0

Z0109MA

10

10

10

10

Z0103MN

image 

SOT-223

3,0

3,0

3,0

5,0

Z0107MN

5,0

5,0

5,0

7,0

Z0109MN

10

10

10

10

T2322B

image 

2,5

200

25

10

10

10

10

2N6073A

4,0

400

30

5,0

5,0

5,0

10

2N6075A

600

MAC4DHM

image 

40

5,0

5,0

5,0

10

MAC4DSM

10

10

10

MAC4DSN

800

MAC4DCN

35

35

35

Таблица 2. Основные параметры симисторов ON Semiconductor в корпусах TO-220 

Наименование Корпус Iмакс. (А) Uмакс. (В) Iперегруз. (А) IGT (ток затвора), мА (макс.)
Q1 Q2 Q3 Q4
T2500D

TO-220AB

6

400

60

25

60

25

60

MAC8N

TO-220AB

8

800

80

35

35

35

MAC9M

TO-220AB

600

50

50

50

MAC9N

TO-220AB

800

MAC228A8

TO-220AB

600

5

5

5

10

MAC228A10

TO-220AB

800

BTA08-600CW3G

TO-220AB Isolated*

600

90

50

50

50

BTA08-800CW3G

TO-220AB Isolated

800

BTB08-600CW3G

TO-220AB

600

BTB08-800CW3G

TO-220AB

800

BTA08-600BW3G

TO-220AB Isolated

600

90

50

50

BTA08-800BW3G

TO-220AB Isolated

800

BTB08-600BW3G

TO-220AB

600

BTB08-800BW3G

TO-220AB

800

MAC12SM

TO-220AB

12

600

5

5

5

MAC12SN

TO-220AB

800

MAC12M

TO-220AB

600

100

35

35

35

MAC12N

TO-220AB

800

MAC212A8

TO-220AB

600

50

50

50

75

MAC212A10

TO-220AB

800

BTA12-600CW3G

TO-220AB Isolated

600

105

35

35

35

BTA12-800CW3G

TO-220AB Isolated

800

BTB12-600CW3G

TO-220AB

600

BTB12-800CW3G

TO-220AB

800

BTA12-600BW3G

TO-220AB Isolated

600

120

50

50

50

BTA12-800BW3G

TO-220AB Isolated

800

BTB12-600BW3G

TO-220AB

600

BTB12-800BW3G

TO-220AB

800

MAC15SM

TO-220AB

15

600

5,0

5,0

5,0

MAC15SN

TO-220AB

800

MAC15M

TO-220AB

600

150

35

35

35

MAC15N

TO-220AB

800

MAC15A6

TO-220AB

400

50

50

50

75

MAC15A8

TO-220AB

600

MAC15A10

TO-220AB

800

MAC16M

TO-220AB

600

50

50

50

MAC16N

TO-220AB

800

MAC16CM

TO-220AB

16

600

35

35

35

MAC16CN

TO-220AB

800

BTA16-600CW3G

TO-220AB Isolated

600

170

35

35

35

BTA16-600CW3G

TO-220AB Isolated

800

BTB16-600CW3G

TO-220AB

600

BTB16-800CW3G

TO-220AB

800

BTA16-600BW3G

TO-220AB Isolated

600

50

50

50

BTA16-800BW3G

TO-220AB Isolated

800

BTB16-600BW3G

TO-220AB

600

BTB16-800BW3G

TO-220AB

800

*Isolated – изолированный корпус ТО-220 с внутренней изоляцией кристалла.

image image

Максимально допустимые токи симисторов ON Semiconductor находятся в диапазоне от 0,6 до 16 А. Симисторы одной серии чаще всего отличаются чувствительностью затвора. Для применений с небольшими помехами по цепям питания обычно выбирают приборы с низким током управления. Для работы при больших импульсных помехах предпочтение отдается триакам с высоким значением тока управления (см. значения тока затвора в таблицах 1 и 2). Симисторы характеризуются высоким допустимым током перегрузки, который выше максимально допустимого среднего тока примерно в 10 раз.

Триаками удобно управлять от низковольтных логических выходов. На рисунках 3 и 4 проиллюстрировано управление симистором от логических уровней с обеспечением оптической развязки.

Рис. 3. Включение (открывание) симистора уровнем логического нуля с обеспечением гальванической развязки

Рис. 4. Включение (открывание) симистора уровнем логической единицы с обеспечением гальванической развязки 

Минимально допустимое напряжение питания для схем, приведенных на рисунках 3 и 4, ограничено падением напряжения на открытом транзисторе и светодиоде оптрона. Падение напряжения на открытом транзисторе составляет около 0,1 В; падение на открытом светодиоде находится в пределах от 1 до 1,5 В в зависимости от типа оптрона. Падение напряжения на ограничительном резисторе R3 – это разность между напряжением питания логической части схемы (или микроконтроллера) и суммой падений напряжений на открытом транзисторе и светодиоде. Из этих соотношений читатель может легко рассчитать минимально допустимое напряжение питания логической части схемы для надежного открывания симистора. Ток управления симистором будет определяться выходным каскадом оптопары и коэффициентом передачи тока между входом и выходом оптрона (Current Transfer Ratio или CTR).

Эффект dv/dt и способы борьбы с ним

Управляющий сигнал для симистора необходим только для его включения (выключение происходит при снижении коммутируемого тока ниже тока удержания), но при высокой скорости изменения коммутируемого напряжения dv/dt есть вероятность самопроизвольного включения триака даже при отсутствии управляющего сигнала. По этой причине производители симисторов указывают максимально допустимую величину dv/dt, при которой неуправляемое включение триака не происходит. Превышение скорости нарастания выше указанных значений в документации может привести к выходу симисторных структур из строя. Причинами нежелательных включений могут стать импульсные помехи по цепям питания нагрузки или выбросы напряжения при срабатывании ключа, работающего на индуктивную нагрузку. Эффективный способ решения этой проблемы – включение снабберной (демпфирующей) RC-цепи параллельно выходу ключевого каскада, как показано на рисунке 5.

В снабберной цепи желательно использовать металлопленочный полиэстерный конденсатор. Его номинал выбирается в пределах 0,01…0,1 мкФ, сопротивление резистора – от 20 до 500 Ом. Эти значения следует рассматривать только в качестве ориентировочных величин. Подробный расчет снабберных цепей можно найти в руководстве по применению AN1048/D компании On Semiconductor («RC Snabber Networks for Thyristor Power Control and Transient Supression»).

Особенно важно обратить внимание на обеспечение допустимых режимов работы симисторов при их работе на индуктивную нагрузку. На рисунке 6 приведены диаграммы напряжений при работе симистора на резистивную и индуктивную нагрузки. На активной нагрузке ток через симистор совпадает по фазе с выходным напряжением. При работе на индуктивную нагрузку ток через симистор имеет фазовый сдвиг 

q

(задержку). Из-за этого в моменты переключения по нулевому уровню тока напряжение на симисторе не равно нулю (появляются выбросы напряжения). Наиболее неприятный момент происходит при выключении триака, работающего на индуктивную нагрузку. В эти моменты скорость нарастания напряжения на симисторе dv/dt может достичь недопустимо больших значений и вывести прибор из строя, если не принять никаких мер защиты (снабберная RC-цепь, варистор, защитные ограничительные диоды – супрессоры).

Рис. 6. Диаграммы напряжений при работе симистора на активную и индуктивную нагрузки

Для обеспечения переключения симистора по нулевому уровню тока можно использовать схему с оптической развязкой, приведенной на рисунке 5. Встроенная в оптроны схема управления обеспечивает надежное срабатывание по нулевому току.

Преимущества симисторов в сравнении с электромеханическими реле и контакторами

Механический ресурс электромеханических реле ограничен и определяется максимально возможным количеством переключений. Количество переключений полупроводниковых ключей при правильном расчете и допустимых условиях эксплуатации приборов практически не имеет ограничений. Симисторы позволяют коммутировать нагрузку в каждом полупериоде напряжения сети. Электромеханические реле не могут переключать нагрузку с частотой, допустимой для триаков. Кроме того, высокая частота переключений электромеханических реле резко снижает их ресурс даже при малой нагрузке. Переключение реле вызывает искрообразование, поэтому необходимо применять специальные меры для искрогашения. В некоторых случаях полностью устранить образование искр не удается, что ведет к созданию мощных электромагнитных помех. Высокочастотные помехи могут приводить к сбоям в работе прецизионной чувствительной техники, а симисторные коммутаторы при переключении по нулевому уровню создают существенно меньшие помехи этого типа.

Применение симисторов

Триаки надежно применяются во многих электробытовых приборах:

  • блоки регулировки освещения или диммеры;
  • строительный электроинструмент (дрели, перфораторы, шлифовальные машины и др.);
  • электрические нагреватели с регулировкой температуры нагрева (плиты, печи);
  • компрессоры холодильников и кондиционеров;
  • пылесосы, фены, вентиляторы, швейные, стиральные и посудомоечные машины.

В промышленности применение симисторов аналогично бытовому использованию: это управление электродвигателями, осветительными и нагревательными приборами.

Объемы производства и применения симисторов постоянно увеличиваются. Широкая номенклатура этой продукции ON Semiconductor позволяет разработчику найти оптимальное решение для многих поставленных задач. Большинство рассмотренных в статье симисторов поддерживаются на складе компании КОМПЭЛ и практически всегда доступны для разработчиков.

Получение технической информации, заказ образцов, поставка — e-mail: standart.vesti@compel.ru

Драйверы NCP3066 и NCV3066 обеспечивают постоянный ток для питания сверхъярких светодиодов. Они поддерживают напряжение в цепи обратной связи на очень низком номинальном значении 235 мВ, что используется для регулирования среднего тока линейки светодиодов. Помимо этого, они имеют широкий диапазон входного напряжения (до 40 В), для работы от источников питания 12 В постоянного или переменного напряжения или от аккумуляторных батарей. Данные микросхемы разработаны для топологий boost, buck, buck/boost и SEPIC и требуют минимального количества внешних компонентов. Они имеют функцию включения/выключения, которая отправляет устройства в режим ожидания (<100 мкA), или может быть использована для прямого ослабления свечения светодиодов. Микросхема NCP3066 выпускается в корпусах PDIP-8 и SOIC-8, а также в корпусе DFN-8. NCV3066, которая отвечает требованиям автомобильных применений, имеет корпуса PDIP-8 и SOIC-8, а также корпус DFN-8. </p>

ON Semiconductor представила мощные МОП-транзисторы NТD5803Т и NTD5807N. Изделия используют канальную технологию, которая позволяет достигать отличных показателей по току для изделий в стандартной промышленной упаковке DPAK-4. Эти транзисторы могут с успехом применяться в автомобильных применениях, для LCD-подсветки, драйверов светодиодов, в электродвигателях постоянного тока и для синхронного выпрямления питания, где важны производительность системы и экономия пространства. Транзистор NТD5803N поддерживает ток 76 А; NТD5807Т рассчитан на 23 A. Эти изделия выходят вслед за уже существующей моделью NТD5802ТN, работающей при токе 101 А.

•••

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий