Смеситель из пластиковых труб своими руками. Изготовление самодельных смесителей

imageМузыкальный RGB контроллер, также как и обычный, управляет сменой цвета, уровнем яркости и динамическими эффектами светодиодной ленты.

Однако помимо этих стандартных функций, у него в корпус встроен еще микрофон и есть линейный вход для подключения внешнего источника музыкальных звуков. Микрофон при этом реагирует на музыку играющую внутри помещения, а также на ваш голос. Он воспринимает это в соответствии с тактом, и меняет цветность и динамические эффекты Led ленты.image

Применение и разница с профессиональной цветомузыкой

Такие эффекты можно применять для создания недорогой цветомузыки в кафе, баре, ресторанах.

Очень часто такие RGB девайсы покупают автолюбители и монтируют данную подсветку на днище или в салоне своей машины.

Со стороны выглядит очень эффектно, тем более по затратам это сущие копейки. 

Безусловно, эффекта профессиональной цветомузыки вы не получите. Здесь не будет явного разделения спектра звука на средние и высокие частоты, и тонкой привязки моргания от этого.

Микрофон или Jack 3.5мм

Через линейный вход Jack на 3,5мм, при помощи штекера можно подать звук напрямую от любого источника — магнитофона, радиоприемника, магнитолы, телефона и т.п.

Микрофон при этом отключается и перестает реагировать на внешние звуковые раздражители. Вся функциональность контроллера автоматом переключается на прямой источник звука.

Если кто-то считает этот разъем бесполезной «фичей», то можете сравнить скорость реакции смены цветов при использовании микрофона и Jack 3,5mm разъема.

Разница будет заметна невооруженным глазом. Поэтому, если хотите получить максимальный эффект от музыкального контроллера, то лучше подключать музыку напрямую. Дома это конечно не удобно, придется тянуть отдельный провод к коробочке под потолком.

А вот в автомобиле подсоединить магнитолу, лучше именно таким способом.

Чувствительность микрофона регулируется специальной ручкой.

С обратной стороны вставлена клеммная колодка для непосредственного подключения RGB светодиодной ленты.

В большинстве моделях колодку эту можно отсоединить.

1 of 2

Так гораздо удобнее производить коммутацию всех проводов.

Радиоуправляемый или инфракрасный контроллер

В комплекте всегда идет пульт дистанционного управления. Он может быть двух типов:

1 of 2

Какой из них лучше? При инфракрасном управлении необходимо, чтобы контроллер находился в зоне непосредственной видимости, не более 3-4м.

В противном случае, сигналы до него поступать не будут. При радиоуправлении, вы можете запрятать музыкальный контроллер за подвесной потолок, положить на шкаф или за гипсокартон.

Он все равно будет хорошо реагировать на все сигналы от пульта в радиусе 8-10м. Поэтому такой вариант все же лучше, хотя и дороже.

Обозначаются радиоуправляемые контроллеры маркировкой RF.

На пульте помимо кнопок вкл-выкл находится еще масса других функциональных и разноцветных кнопочек.

Разноцветными можно выбирать свечение подсветки, каким-либо одним статическим цветом, если вы не хотите, чтобы у вас все переливалось как радуга.

Выбор по току и мощности

При подключении RGB контроллера, смотрите на его номинальные параметры. Во-первых, на какое напряжение он рассчитан.

Соответственно именно через такой блок питания, его и нужно запитывать.

Во-вторых, максимальный ток. Исходя из этого, можно узнать какую ленту и какой длины можно через него запустить.

Например, если у него на корпусе написано 12А, то при Led ленте 12в это значение будет:

P=I*U=12А*12в=144Вт

Далее, сверяете этот параметр с маркой вашей светодиодной ленты и подсчитываете достаточно ли здесь мощности.

К примеру лента SMD 5050 60 диодов на 1 метр, потребляет на метровом отрезке 14,4Вт. Это значит, что через вышеприведенный RGB контроллер, можно будет подключить не более 10м такой подсветки.

Причем согласно правил подключения светодиодных лент, это должны быть два параллельных куска по 5м каждый.

Есть и совсем небольшие музыкальные контроллеры, размером чуть более спичечного коробка.

Они и рассчитаны соответственно на совершенно другие токи и другой метраж Led лент.

Схема подключения

При подключении, дабы у вас не перепутались цвета, соблюдайте распиновку. От конца светодиодной ленты, уже как правило отходят припаянные отрезки разноцветных проводов.

Если их нет, придется припаять их самому. Сложного в этом ничего нет, но определенные нюансы все же существуют. Какие именно, описано в статье ниже.

При готовом 4-х пиновом коннекторе-разъеме папа-мама, подключение выглядит еще проще.

Таким образом соединяете все провода по своим цветам:

Что будет, если например подключить зеленый провод от Led ленты не к своему контакту на клеммной колодке, а к другому, например с надписью “B”?

В этом случае при нажатии на пульту на зеленую кнопку, у вас подсветка будет светиться не зеленым цветом, а синим. Что как понимаете, не очень удобно.

На этом же блоке, на клеммной колодке расположены контакты для подключения питания 12 или 24в. Самое главное здесь не перепутать полярность.

На клемму со знаком “+” должен приходить провод от плюсового контакта блока питания. На клемму “-” от минусового. Иначе можете что-нибудь спалить.

В принципе на этом все подключение можно считать завершенным.

Последовательность схемы здесь следующая:

Нажимаете кнопку ВКЛ на пульту и проверяете работоспособность самой ленты, переключая вручную все цвета. Далее ручкой отстраиваете чувствительность. Желательно добиться такого эффекта, чтобы контроллер на реагировал на голос и посторонние разговоры в помещении, зато хорошо срабатывал на басы, музыкальные звуки и мелодии.

Отличие от обычного контроллера

В принципе такой контроллер можно использоваться 90% времени и как обычный RGB контроллер.

Все правила работы с ним, схемы подключения разных отрезков в 10-15-20м, использование усилителей сигнала, автоматически будут распространяться и на него. 

Правда обращайте внимание, есть разновидность RGBW ленты, где присутствует 4-й канал подсветки с чистым белым светом.

Для нее придется поискать соответствующий девайс, также с четырьмя контактами. Иначе белый цвет W, придется откинуть.

Если же у вас обычная одноцветная светодиодная лента, то ее можно разделить на отдельных три участка. Каждый участок при этом подключить к своему R-G-B выходу на контроллере.

Цвета меняться конечно не будут, зато разные моргания и перемигивания в такт музыке сохранятся.

Похожие мастер-классы

Простая цветомузыка на светодиодах Цветомузыка из жесткого диска Двухполосный темброблок Простой фильтр низких частот своими руками Беспроводной светодиод Цветомузыка

Особо интересное

Новый способ быстрого получения саженцев с любого дерева Любопытный способ укоренения саженцев с веток в воде Как убрать желтизну на любом пластике Как без мороки завести бегунок на молнию с помощью вилки Стопроцентный быстрый способ получения саженцев с корнем из 3 простых способа ведения электрода при сварке для новичков Комментарии (7)

Схема цветомузыки на светодиодах — чем же они так привлекательны…

Преимущества светодиодов перед лампами накаливания в цветомузыкальных приставках — неоспоримы:

  • более широкий цветовой спектр
  • более насыщенный цвет
  • разнообразные исполнения
  • низкое потребление
  • высокая скорость срабатывания

В данной статье мы будем рассматривать, как можно «заставить» светодиоды мигать от источников звуковой частоты, используя простые схемы.

—> —>

Читайте также:  Как быстро и эффективно восстановить светодиодную лампочку

Какие варианты преобразования звукового сигнала существуют? Эти и другие вопросы будем рассматривать на конкретных примерах.

Преимущества светодиодной продукции

Современный рынок электроники представляет большое разнообразие светодиодных лент, которые обладают самыми разными цветовыми эффектами. С их помощью можно создать качественное точечное освещение, есть возможность сделать цветомузыку с мигающими или размытыми эффектами.

В отличии от обычных лампочек, светодиоды характеризуются большим количеством положительных характеристик. Среди основных преимуществ светодиодных лент можно выделить:

  • широкая и разнообразная цветовая гамма;
  • передача насыщенных цветов;
  • разные варианты исполнения – линейки, модули, дискретные элементы, RGB-ленты;
  • высокая скорость срабатывания;
  • минимальный объем потребляемой энергии.

Настройки

В момент первого включения нужно сделать пару настроек: Яркость: удерживайте кнопку color при включении питания. На первых 8 светодиодах будет отображаться радуга светодиодов. С помощью ручки param измените яркость. По завершении нажмите кнопку color еще раз, и ваша конфигурация будет сохранена в памяти. Длина светодиодной полосы: удерживайте кнопку pattern при включении питания. Отобразится один, два или три красных светодиода. Используйте ручку param, чтобы выбрать длину светодиодной полосы в зависимости от количества красных светодиодов: 1=60 светодиодов 2=120 светодиодов 3=180 светодиодов По завершении нажмите кнопку pattern еще раз, и ваша конфигурация будет сохранена в памяти.

Простая схема с одним светильником

Для начала стоит изучить простую схему цветомузыки. Это устройство, которое выполняется на одном светодиоде, транзисторе и резисторе. Питание на такую цветомузыку можно подавать от постоянного источника тока напряжением 6-12 вольт. Работает устройство по принципу усилительного каскада с общим эмиттером. Воздействие в виде меняющегося по частоте сигнала и амплитуды поступает на основную базу. Как только частота колебаний превышает определенное пороговое значение, открывается транзистор и светодиод сразу вспыхивает.

Основные детали и компоненты

Перед тем как изготавливать аппаратуру для цветомузыки своими руками, необходимо заранее приготовить все детали и компоненты. В схеме следует пользоваться лишь постоянными резисторами с диапазоном мощности 0,125-0,25 Ом. Корпуса элементов схемы промаркированы специальными полосками, указывающими на значение сопротивления. Дополнительно используются подстроечные резисторы R7, R10, R14, R18. Они могут быть разных типов, но единственным требованием к ним является возможность монтажа на плату, используемую для сборки.

Конденсаторы рассчитываются на рабочее напряжение от 16В и выше. В цветомузыке также могут использоваться любые типы этих устройств. Если невозможно найти конденсатор с нужными параметрами, допускается параллельное соединение двух других, с меньшими емкостями, составляющих в сумме требуемые показатели.

Сделанная цветомузыкальная схема не может обойтись без диодного моста. Обычно он рассчитывается на рабочий ток до 200 мА и напряжение 50 вольт. При отсутствии готового устройства можно воспользоваться несколькими отдельно взятыми выпрямительными диодами и смонтировать их для удобства на отдельной небольшой плате.

Основные цвета светодиодов – красный, зеленый и синий. Их общее количество определяется из расчета на один канал – 6 штук. Будут нужны стандартные транзисторы с любым индексом обозначения. Стабилизатор напряжения с артикулом 7805 рассчитывается на 5В, а устройство на 9В имеет обозначение 7809. При наличии опыта, цветомузыка собирается на плате Arduino и светодиодах.

Схема с одноцветной лентой

Данная цветомузыка на транзисторе собирается с применением светодиодной ленты в нагрузке. Для организации такой цветомузыки потребуется увеличить питание до 12 В, найти и установить транзистор с максимальным током коллектора, который превышает ток нагрузки, также потребуется пересчитать общий номинал резистора. Подобная цветомузыка достаточно проста, выполнена на одной одноцветной светодиодной ленте и идеально подойдет для начинающих радиолюбителей. Собрать ее можно без особых проблем в домашних условиях.

Цветомузыка на микросхемах NE555 и CD4017

Схема состоит из использования микросхемы NE555, выполняющей роль астабильного мультивибратора для обеспечения тактовых импульсов для CD4017.

Читайте также:  Почему моргают энергосберегающие лампочки? Почему выключенная энергосберегающая лампочка мигает?

Для каждого тактового импульса, получаемого на тактовом входе (pin14) интегральная схема CD4017, выходы Q0-Q9 (см. схему контактов CD 4017) запускаются один за другим выборочно. Скорость, с которой будут загораться светодиоды зависит от частоты тактовых импульсов, генерируемых NE555.

  • Соберите схему на печатной плате хорошего качества или общей плате.
  • Микросхемы должны быть установлены на держателях.
  • Скорость работы светодиодов можно регулировать путем изменения R2.
  • Конденсатор С1 должен быть рассчитан на 15В.
  • Использование различных цветных светодиодов может привести к лучшему визуальному эффекту.

Рассмотренные выше схемы — наиболее распространенные, для самостоятельной сборки цветомузыки. На просторах интернета можно найти еще много других. но общий принцип будет аналогичным. По мере необходимости — будем дополнять. В первую очередь будем рассматривать цветомузыку на светодиодных лентах, но это чуть позже…

Простая трёхканальная схема

Чтобы получить цветомузыку, лишенную всех перечисленных выше недостатков, стоит использовать специальный трехканальный преобразователь звука. Питается такая схема постоянным напряжением 9 В и в состоянии эффективно засветить по одному или два светодиода в каждом канале. Среди основных конструкционных элементов, которыми характеризуется такая цветомузыкальная схема, можно отметить:

  • три независимых усилительных каскада, которые собираются на транзисторах категории КТ315 (КТ3102);
  • в нагрузку транзисторов включены светодиоды разного цвета;
  • для элемента предварительного усиления может быть использован сетевой небольшой трансформатор понижающего характера.

Входящий сигнал подается на вторичную обмотку трансформатора, который в свою очередь выполняет две основные функции – развязывает на гальваническом уровне два устройства, а также усиливает звук с основного линейного выхода. После этого сигнал поступает на три параллельно расположенных и включенных фильтра, собранные на базе RC-цепей. Они работают на индивидуальной частотной полосе, которая прямо зависит от номинала конденсатора и резистора.

Детали схемы

Какие нюансы необходимо учесть при сборке цветомузыки из светодиодной ленты (на схеме частично это показано)?

  • Микрофон лучше выбирать электретный, к примеру, из гарнитура для компьютера. Прекрасно себя ведет в этой схеме. Здесь важно правильно подключить его, учитывая полярность.
  • Используемые электролитические конденсаторы должны быть напряжением не ниже 16 вольт. Остальные – это керамические аналоги.
  • Обратите внимание на конденсатор C fc*. Он установлен для того, чтобы немного утихомирить высокие частоты, это связано с видом микрофона. Если используется в схеме другая марка микрофона, то можно этот конденсатор не устанавливать.
  • Диоды D6, D7, D8 установлены по одной простой причине: цветовую установку можно использовать и как обычную подсветку без мигания в такт музыке. Для этого можно переключение режимов проводить стандартным тумблером. Если данная схема будет использоваться только в качестве цветомузыки, то в этих диодах нет нужды.
  • Что касается транзисторов, то их выбор будет зависеть от длины светодиодной ленты. К примеру, если лента потребляет ток в пределах 0,5 ампер, то нужно установить транзисторы КТ815 или 817, если сила тока не превышает 0,3 ампера, то подойдет и КТ503.

Вот так можно ответить на вопрос, как сделать цветомузыку безконтактную, используя обычную светодиодную ленту.

Цветомузыка с RGB лентой

Данная схема приставки осуществляет работу от 12 вольт и идеально подходит для установки на авто. Такая цветомузыка оптимально совмещает в себе основные функции ранее рассмотренных схем и в состоянии работать, как в режиме светильника, так и цветомузыки. Второй режим достигается за счет особого бесконтактного управления RGB-лентой посредством микрофона. Что касается режима светильника, то он основан на одновременном запуске свечения зеленого, красного и синего светодиода на полную мощность. Выбор режима можно осуществлять посредством специального переключателя, который находится на специальной плате.

Чтобы понять, как осуществляет работу данная приставка, стоит изучить ее последовательность действий. Основным источником сигнала здесь является микрофон, преобразующий колебания звука, исходящей от фонограммы. Полученный сигнал незначителен, потому требует усиления. Добиться этого можно посредством применения транзистора или специального операционного усилителя. После этого запускается автоматический регулятор уровня АРУ. Он эффективно удерживает колебания звука в разумных пределах и подготавливает его к последующей обработке. Встроенные фильтры разделяют сигнал на три части, каждая из которых работает в одном определенном частотном диапазоне. В завершении потребуется просто усилить предварительно подготовленный сигнал тока. Для этой цели используются специальные транзисторы, которые работают в ключевом режиме.

Советуем почитать:бегущие огни на светодиодах своими руками

Приобретение готового ЦМУ

Если нет желания сделать цветомузыку для использования в домашних условиях, можно приобрести ЦМУ, то есть цветомузыкальную установку. Это готовое функциональное решение, в составе которого присутствует контроллер. Он будет обрабатывать звук, преобразуя его в светомузыкальное визуальное представление. В процессе воспроизведения света будет меняться его интенсивность и цветовое решение, создавая тем самым эффект самой настоящей дискотеки. Также в состав устройства ЦМУ входит панель со встроенными диодами.

В основе данных приспособлений может находиться спектральное разложение по частотам, где каждой из них будет соответствовать определенное цветовое решение или предварительно заданные регулировки с самыми разными эффектами и их чередованием. Осуществлять их настройку можно посредством входящего в комплект пульта дистанционного управления.

Важно! Современные ЦМУ очень просты в процессе инсталляции и настройки. Это идеальное решение для организации домашней вечеринки или дискотеки.

Принцип действия цветомузыки на светодиодах

Основой работы каждой схемы цветомузыкальной установки лежит физический принцип, связанный с частотным преобразованием музыки. Далее она передается через отдельные каналы и осуществляет управление подключенными световыми приборами. Данная цепочка связывает основные музыкальные характеристики с цветовыми элементами, которые соответствуют друг другу и работают во взаимной связи. Этот принцип служит основой всех радиоэлектронных схем из области цветомузыки, в том числе и созданных самостоятельно.

Чаще всего цветовая гамма включает в себя как минимум три разных цвета, например, красный, зеленый и синий. Существует множество комбинаций, создаваемых в результате их смешивания, поэтому, если схема собрана нормально, она обязательно даст желаемый эффект. Для его достижения сигнал разделяется и работает на низких, средних и высоких частотах. Разделение осуществляется с помощью специальных фильтров LC и RC, устанавливаемых в общую цепочку светодиодной цветомузыкальной системы.

Читайте также:  Виды блоков питания для светодиодной ленты — какой выбрать и где установить.

Существуют определенные параметры, используемые при настройке фильтров, работающих в собственной узкой частотной полосе и пропускающих колебания лишь на этом отрезке диапазона звучания:

  • ФНЧ – фильтры низких частот. Частота колебаний, проходящих через них, достигает 300 Гц, а световой источник должен быть красного цвета.
  • ФСЧ – фильтры средних частот. Способны пропускать колебания частотой от 250 до 2500 Гц, цвет источника света – желтый или зеленый.
  • ФВЧ – фильтры высоких частот, пропускающие более 2500 Гц и работающие совместно с синим источником света.

Разделенные частоты схемы немного перекрывают друг друга, что дает возможность получать разнообразные цветовые оттенки в процессе работы. Основные цвета, перечисленные выше, не имеют принципиального значения, их вполне возможно заменить другими – наиболее подходящими для конкретной ситуации. В некоторых случаях конечный результат значительно превосходит ожидания, благодаря использованию нестандартных цветовых решений.

22.05.2019  colorMusic_v2.10: • Исправлен глюк с большим количеством светодиодов на МЕГЕ

СТАРЫЕ ВЕРСИИ

15.03.2018, colorMusic_v1.1:

  • Добавлена плавность режиму цветомузыки по частотам! Настройка SMOOTH_STEP
  • Добавлен режим стробоскопа с целой кучей настроек!

16.03.2018 colorMusic_v2.0:

  • Добавлено управление с ИК пульта! Купить пульт можно по этой ссылке, цена вопроса 50р
  • 7 режим – Режим подсветки
  • 8 режим – Режим бегущих частот
  • 9 режим – Анализатор спектра (Версия 2.1)
  • У некоторых режимов появились подрежимы
  • Возможна работа БЕЗ потенциометра. Читайте ниже в инструкции по эксплуатации

18.03.2018 colorMusic_v2.2:

  • Настройки сохраняются в память (энергонезависимую)

19.03.2018 colorMusic_v2.3:

  • Улучшена производительность, почищен мусор
  • в 7 режиме радугу можно остановить и пустить вспять

08.05.2018 colorMusic_v2.4:

  • Добавлена настройка RESET_SETTINGS для сброса настроек в случае некорректной работы. Читайте ниже в FAQ

11.05.2018 ночь colorMusic_v2.5:

  • Код оптимизирован,  библиотеки FastLED и IRremote заменены на более оптимальные Adafruit_NeoPixel и IRLremote (для работы версии 2.5 и выше необходимо установить новые библиотеки из общей папки с библиотеками!)
  • ИК пульт теперь срабатывает почти в 100% случаев вместо прежних 30%
  • Поддержка максимум 410 светодиодов

11.05.2018 день colorMusic_v2.6:

  • Возвращена библиотека FastLED (как оказалось, функции FastLED работают гораздо быстрее, чем NeoPixel, а также поддерживает такое же количество светодиодов!)
  • ИК пульт всё ещё срабатывает почти в 100%, по сравнению с 30% в версиях 2.0-2.4
  • Поддержка максимум 410 светодиодов (работа может быть нестабильной)

20.05.2018 colorMusic_v2.6.1:

  • Исправлен небольшой баг

22.06.18 colorMusic_v2.6.2

  • Добавлено сохранение состояния “включено/выключено” в энергонезависимую память. Штука опциональная, в настройках можно выключить (настройка KEEP_STATE)

28.09.2018  colorMusic_v2.7 (by Евгений Зятьков):

  • Настройка пульта внесена в скетч, тип пульта настраивается в IR_RCT
  • Добавлена поддержка Arduino Mega и Pro Micro
  • Исправлены мелкие баги

22.11.2018  colorMusic_v2.8:

• Добавлено ограничение тока для всей системы, настройка CURRENT_LIMIT • Слегка оптимизированы настройки

22.05.2019  colorMusic_v2.10: • Исправлен глюк с большим количеством светодиодов на МЕГЕ

Крутейшая свето- цветомузыка на Arduino и адресной светодиодной ленте WS2812b. Работает с лентой любой длины (до 450 светодиодов (версия 1.1), до 350 светодиодов (версия 2.0)), и может быть размещена в любом месте в квартире или автомобиле.

Режимы работы (переключаются кнопкой или с ИК пульта (версия 2.0)):

  • VU meter (столбик громкости): от зелёного к красному
  • VU meter (столбик громкости): плавно бегущая радуга
  • Светомузыка по частотам: 5 полос симметрично
  • Светомузыка по частотам: 3 полосы
  • Светомузыка по частотам: 1 полоса
  • Стробоскоп (Версия 2.0)
  • Подсветка (Версия 2.0)
    • Постоянный цвет
    • Плавная смена цвета
    • Бегущая радуга
  • Бегущие частоты (Версия 2.0)
  • Анализатор спектра (Версия 2.1)

Особенности:

  • Плавная анимация (можно настроить)
  • Автонастройка по громкости (можно настроить)
  • Фильтр нижнего шума (можно настроить)
  • Автокалибровка шума при запуске (можно настроить)
  • Поддержка стерео и моно звука (можно настроить)
  • Лента не гаснет полностью (Версия 2.0)
  • (Версия 2.1) все настройки сохраняются в памяти и не сбрасываются при перезагрузке
    • Сохранение настроек происходит при выключении кнопкой звёздочка (*)
    • А также через 30 секунд после последнего нажатия на любую кнопку ИК пульта

ПОДРОБНОЕ ВИДЕО ПО ПРОЕКТУ

Понятные схемы, прошивки с комментариями и подробные инструкции это очень большая работа. Буду рад, если вы поддержите такой подход к созданию Ардуино проектов.

ИНСТРУКЦИИ ПО ЭКСПЛУАТАЦИИ

НАСТРОЙКА ОПОРНОГО НАПРЯЖЕНИЯ. Потенциометр настройки опорного напряжения настраивается “методом тыка” пока не заработает (у меня стоит в середине). Подстройка нужна при смене источника аудио или изменении его потенциальной громкости.

  • Если во время работы в режиме VU метра (первые два режима) шкала всё время горит – слишком низкое опорное напряжение, Ардуино получает слишком высокий сигнал
  • Если не горит – опорное слишком высокое, системе не удаётся распознать изменение громкости с достаточной для работы точностью

МОЖНО СОБРАТЬ СХЕМУ БЕЗ ПОТЕНЦИОМЕТРА! Для этого параметру POTENT (в скетче в блоке настроек в настройках сигнала) присваиваем 0. Будет задействован внутренний опорный источник опорного напряжения 1.1 Вольт. Но он будет работать не с любой громкостью! Для корректной работы системы нужно будет подобрать громкость входящего аудио сигнала так, чтобы всё было красиво, используя предыдущие два пункта по настройке.

НАСТРОЙКА НИЖНЕГО ПОРОГА ШУМОВ является очень важной, в идеале выполняется 1 раз для любого нового источника звука или смены громкости старого. Есть 3 варианта настройки:

  • Ручная: выключаем AUTO_LOW_PASS и EEPROM_LOW_PASS (ставим около них 0), настраиваем значения LOW_PASS и SPEKTR_LOW_PASS вручную, методом тыка
  • Автонастройка при каждом запуске: включаем AUTO_LOW_PASS, выключаем EEPROM_LOW_PASS . При подаче питания музыка должна стоять на паузе! Калибровка происходит буквально за 1 секунду.
  • По кнопке: при удерживании кнопки 1 секунду настраивается нижний порог шума (музыку на паузу!)
  • Из памяти (ЛУЧШИЙ ВАРИАНТ): выключаем AUTO_LOW_PASS и включаем EEPROM_LOW_PASS
    • Включаем систему, источник звука подключен проводом
    • Ставим музыку на паузу
    • Удерживаем кнопку 1 секунду (либо кликаем кнопку 0 (ноль) на ИК пульте
    • Загорится светодиод на плате Arduino, погаснет через ~1.5 секунды
    • Значения шумов будут записаны в память и будут САМИ загружаться при последующем запуске!

Управление с ИК пульта

Номер режима Режим Кнопки ← → Кнопки ↑ ↓ Кнопка #
1 Шкала громкости (градиент) Плавность анимации
2 Шкала громкости (радуга) Плавность анимации Скорость радуги
3 Цветомузыка (5 полос) Плавность анимации Чувствительность
4 Цветомузыка (3 полосы) Плавность анимации Чувствительность
5 Цветомузыка (1 полоса)
5,1 3 частоты Плавность анимации Чувствительность Смена подрежима
5,2 Низкие Плавность анимации Чувствительность Смена подрежима
5,3 Средние Плавность анимации Чувствительность Смена подрежима
5,4 Высокие Плавность анимации Чувствительность Смена подрежима
6 Стробоскоп Плавность вспышек Частота вспышек
7 Цветная подсветка
7,1 Постоянный Цвет Насыщенность Смена подрежима
7,2 Плавная смена цвета Скорость Насыщенность Смена подрежима
7,3 Бегущая радуга Скорость Шаг радуги Смена подрежима
8 Бегущие частоты
8,1 3 частоты Скорость Чувствительность Смена подрежима
8,2 Низкие Скорость Чувствительность Смена подрежима
8,3 Средние Скорость Чувствительность Смена подрежима
8,4 Высокие Скорость Чувствительность Смена подрежима
9 Анализатор спектра Шаг цвета Цвет
Общие настройки (перекл. ОК) Все режимы Общая яркость горящих светодиодов Яркость “не горящих” светодиодов
Остальные кнопки: цифра 0 – калибровка шума, * – вкл/выкл систему,

СХЕМЫ, ПЕЧАТНЫЕ ПЛАТЫ

Внимание! arduino подключается к источнику звука до усилителя (линейному выходу)! звук, который идёт с усилителя на колонки, может спалить плату!

Разделяем на две вертикальные стойки

Без режима частот

С частотами (3-5 режим)

С микрофоном

От источника 12В

С ИК пультом 3.5 вход

С ИК пультом мик вход

С ИК пультом 3.5

Вход с усилителя (с колонки)

Схема для Pro Micro (by Евгений Зятьков)

МАТЕРИАЛЫ И КОМПОНЕНТЫ

Ссылки на магазины, с которых я закупаюсь уже не один год

Вам скорее всего пригодится:

  • Arduino NANO 328p – искать

ПРОШИВКА И НАСТРОЙКА

Загружать прошивку желательно до подключения компонентов, чтобы убедиться в том, что плата рабочая. После сборки можно прошить ещё раз, плата должна спокойно прошиться. В проектах с мощными потребителями в цепи питания платы 5V (адресная светодиодная лента, сервоприводы, моторы и проч.) необходимо подать на схему внешнее питание 5V перед подключением Arduino к компьютеру, потому что USB не обеспечит нужный ток, если например лента его потребует. Это может привести к выгоранию защитного диода на плате Arduino. Гайд по скачиванию и загрузке прошивки можно найти под спойлером на следующей строчке.

ИНСТРУКЦИЯ ПО ЗАГРУЗКЕ ПРОШИВКИ

1. Если это ваше первое знакомство с Arduino, внимательно изучите гайд для новичков и установите необходимые для загрузки прошивки программы.

2. Скачайте архив со страницы проекта. Если вы зашли с GitHub – кликните справа вверху Clone or download, затем Download ZIP. Это тот же самый архив!

3. Извлеките архив. Содержимое папки libraries перетащите в пустое место папки с библиотеками Arduino C:/Program Files (x86)/Arduino/libraries/

4. Папку с прошивкой из firmware положите по пути без русских букв. Если в папке с прошивкой несколько файлов – это вкладки, они откроются автоматически.

5. Настройте прошивку (если нужно), выберите свою плату, процессор. Подключите Arduino к компьютеру, выберите её COM порт и нажмите загрузить.

6. При возникновении ошибок или красного текста в логе обратитесь к 5-ому пункту гайда для новичков – “Разбор ошибок загрузки и компиляции“.

Содержимое папок в архиве

  • libraries – библиотеки проекта. Заменить имеющиеся версии
  • firmware – прошивки
    • colorMusic_v*** – прошивка для Arduino
    • Old versions – старые версии прошивок (не рекомендуется вообще их трогать)
    • IRtest_2.0 – скетч для получения кодов кнопок стороннего ИК пульта
  • schemes – схемы подключения

Дополнительно

  • FAQ: Большинство проблем можно решить, прочитав вот эту статью: https://alexgyver.ru/ws2812_guide/

    В: Купил ленту, на ней контакты G, R, B, 12. Как подключить? О: Это не та лента, можешь выкинуть

    В: Прошивка загружается, но выползает рыжими буквами ошибка “Pragma message….” О: Это не ошибка, а информация о версии библиотеки

    В: Что делать, чтобы подключить ленту своей длины? О: Посчитать количество светодиодов, перед загрузкой прошивки изменить самую первую в скетче настройку NUM_LEDS (по умолчанию стоит 120, заменить на своё). Да, просто заменить и всё!!!

    В: Сколько светодиодов поддерживает система? О: Версия 1.1: максимум 450 штук, версия 2.0: 350 штук

    В: Как увеличить это количество? О: Варианта два: оптимизировать код, взять другую библиотеку для ленты (но придётся переписать часть). Либо взять Arduino MEGA, у неё больше памяти.

    В: Какой конденсатор ставить на питание ленты? О: Электролитический. Напряжение 6.3 Вольт минимум (можно больше, но сам кондер будет крупнее). Ёмкость – минимум 1000 мкФ, а так чем больше тем лучше.

    В: Как проверить ленту без Arduino? Горит ли лента без Arduino? О: Адресная лента управляется по спец протоколу и работает ТОЛЬКО при подключении к драйверу (микроконтроллеру)

  • МОЖНО СОБРАТЬ СХЕМУ БЕЗ ПОТЕНЦИОМЕТРА! Для этого параметру POTENT (в скетче в блоке настроек в настройках сигнала) присваиваем 0. Будет задействован внутренний опорный источник опорного напряжения 1.1 Вольт. Но он будет работать не с любой громкостью! Для корректной работы системы нужно будет подобрать громкость входящего аудио сигнала так, чтобы всё было красиво, используя предыдущие два пункта по настройке.

  • Версию 2.0 и выше можно использовать БЕЗ ИК ПУЛЬТА, режимы переключаются кнопкой, всё остальное настраивается вручную перед загрузкой прошивки.

  • Как настроить другой пульт? У других пультов кнопки имеют другой код, для определения кода кнопок используйте скетч IR_test (версии 2.0-2.4) или IRtest_2.0 (для версий 2.5+), есть в архиве проекта. Скетч шлёт в монитор порта коды нажатых кнопок. Далее в основном скетче в секции для разработчиков есть блок дефайнов для кнопок пульта, просто измените коды на свои. Можно сделать калибровку пульта, но честно уже совсем лень.

  • Как сделать два столбика громкости по каналам? Для этого вовсе необязательно переписывать прошивку, достаточно разрезать длинный кусок ленты на два коротких и восстановить нарушенные электрические связи тремя проводами (GND, 5V, DO-DI). Лента продолжит работать, как одно целое, но теперь у вас есть два куска. Само собой, аудио-штекер должен быть подключен тремя проводами, а в настройках отключен моно режим (MONO 0), а количество светодиодов должно быть равно суммарному количеству на двух отрезках. P.S. Посмотри первую схему в схемах!
  • Как сбросить настройки, которые хранятся в памяти? Если вы доигрались с настройками и что то пошло не так, можно сбросить настройки на “заводские”.  Начиная с версии 2.4 есть настройка RESET_SETTINGS, ставите её 1, прошиваетесь, ставите 0 и снова прошиваетесь. В память будут записаны настройки из скетча. Если вы на 2.3, то смело обновляйте до 2.4, версии отличаются только новой настройкой, которая никак не повлияет на работу системы. В версии 2.9 появилась настройка SETTINGS_LOG, которая выводит в порт значения хранящихся в памяти настроек. Так, для отладки и понимания.

АЛГОРИТМ РАБОТЫ

Режим громкости

  • Делается 100 измерений напряжения на АЦП
  • Ищется максимальное
  • Фильтруется по нижнему порогу шумов
  • Возводится в степень для большей “резкости” анимации
  • Фильтруется “бегущим средним”
  • Ищется “средняя” громкость за несколько секунд (тоже бегущее среднее, но очень медленное)
  • Ищем “максимальную громкость шкалы”, как среднюю * некоторый коэффициент
  • Преобразуем сигнал в количество горящих светодиодов
  • Включаются светодиоды согласно режиму отрисовки

Режим цветомузыки:

  • Преобразование Хартли (разбивка на спектр частот)
  • Фильтрация по нижнему порогу шумов
  • Поиск максимального значения в трёх диапазонах (низкие, средние, высокие)
  • Расчёт “средней громкости” (медленное бегущее среднее)
  • Если текущий сигнал больше среднего * коэффициент – включаем светодиоды
  • Итого имеем массив colorMusicFlash, в котором три ячейки 1 или 0, вкл или выкл
  • Включаем отрезки светодиодов согласно массиву

Цветомузыка – это простое и эффективное решение украсить свое рабочее место, компьютер, возможно, какое-то помещение для танцев, здесь никто не ограничивает фантазий.

Тем более что все на самом деле не так сложно и доступно каждому. Хочу поделиться с вами своим опытом сборки такого устройства.

image

Я старался найти максимально простое и не дорогое решение.

image

image
image

А теперь давайте объединим две цепочки

image

Левая часть пропускает все верхние частоты от заданной, а правая, наоборот, пропускает все ниже лежащие частоты от заданной, пропущенные левой частью.

Получится полосовой фильтр, т.е. фильтр, пропускающий определенную полосу частот.

Как видите для фильтрации нужных частот достаточно использовать только конденсатор и резистор.

Все дело в особенности конденсатора менять свое сопротивление в зависимости от частоты проходящего через него сигнала. Чем больше частота, тем меньше его сопротивление.

При рассмотрении фильтров существует понятие частоты среза. В случае простого RC-фильтра частота среза выражается формулой

f ср = 1/2πRC

Для расчетов можно воспользоваться формулой или любым из онлайн калькулятором на просторах инета.

Расчеты рассмотрим ниже, а пока добавим к концу каждой цепочки биполярный n-p-n транзистор. Он послужит в роли ключика, управляющего нашей светодиодной лентой. Получится как-то так:

image

Или для четырехцветной ленты:

image

Теперь на вход нашего устройства необходимо подать звуковой сигнал. Амплитуда сигнала должна быть достаточной, чтобы наш ключик пропустил через себя ток. А именно больше, чем где-то 0,6В. И от того насколько амплитуда сигнала больше этой величины будет зависеть яркость вспышек наших светодиодов.

Будем использовать в качестве источника сигнала электретный микрофон.  В конце статьи оставлю все ссылки на основные компоненты от проверенных продавцов. Может кому пригодится.

Типичная схема включения микрофона

image

Амплитуда звукового сигнала на выходе микрофона очень мала. Чтобы раскачать наши выходные транзисторы потребуется усилитель.

Воспользуемся решением на операционном усилителе LM358.

Соберем следующую схему усилителя с отрицательной обратной связью:

Диоды можно использовать любые кремниевые, транзистор VT1 я взял 2n5551, но можно и другой кремниевый n-p-n.

Итак, с усилителем разобрались. Присоединим к выходу усилителя наши частотные фильтры с уже рассчитанными номиналами.

Вот что получится:

2n5551

Ну, вот так. Красному светодиоду достались частоты от 0 до 482 Гц, синему – от 482 до 1166 Гц, зеленому – от 1061 до 1592 Гц, белому – от 1592 Гц и выше.

Почему именно так.

Потому, что вероятность появления сигнала, который сможет приоткрыть наш выходной транзистор на диапазоне от 20 Гц до 20 кГц, не линейна. Если мы распределим частоты выходных фильтров равномерно, то будем наблюдать насыщенное мерцание одного светодиода, ну, может быть двух, и редкое включение в работу остальных. Вряд ли это кому-то понравится.

Поэтому, после подборов и практических наблюдений на многих музыкальных композициях, оптимальным выбором стали вышеприведённые диапазоны.

Для тех, кто будет использовать трехцветную ленту оптимальные диапазоны думаю лучше оставить те же. Белый цвет проявляется гораздо у меньшего количества мелодий, является скорее интересным дополнением.

После первого подключения схемы, собранной на макетной плате. Меня ожидало разочарование. Светодиод, отвечающий за самые низкие частоты, отказывался подавать признаки жизни. Я долго не мог понять, в чем болезнь, пока не замерил напряжение на базе транзистора. Оказывается в режиме покоя, оно постоянно смещается ниже нуля, т.е. становится отрицательным. И с приходом сигнала не может подняться выше черты открытия транзистора. Видимо это результат действия низкочастотных шумов, создаваемых нашими полупроводниками (если не прав ругайте меня). Установив на вход фильтра дополнительный резистор, преградивший вход частот до 154 ГЦ (возможно много, но визуально низкие частоты не пострадали, зато помех меньше), проблема решилась. На базе транзистора установился ноль, схема заработала.

Чтобы по максимуму уберечься от сюрпризов высокочастотных шумов установил на выходе фильтра белого светодиода еще одну RC-цепочку. В результате получилось так:

На макетной плате  такая паутина:

В качестве выходных ключей VT2-VT5 использовал тот же транзистор 2n5551. Он может пропускать через себя максимальный ток в 0,6А.  При использовании полуметра ленты по моим замерам через транзистор проходит максимум 20mA. Так что он даже «не потеет».

Чтобы схема приняла более законченный вид на вход каждого фильтра добавим построечные потенциометры.

Получаем возможность регулировать амплитуду сигнала на входе каждого фильтра в отдельности. Такое добавление необязательно, но делает схему более универсальной. Если, например, вы настраивали работу схемы на столе, а потом перенесли в другое место, с другими наводками, помехами на определенных частотах. Пожалуйста, взяли, подкрутили, немного убавили силу сигнала и снова баланс. Все красиво.

Теперь осталось только взять в руки паяльник и собрать все в кучу, как можно компактней. Вот что получилось.

У меня осталось место и я решил добавить  небольшой дроссель для уменьшения пульсаций от импульсного блока питания. Дополнение, опять же, необязательное, но добавит качества питающему напряжению. Ставится последовательно от + блока питания к + нашей схемы. Допаял разъем для удобного подключения. И поместил в корпус из под оконного датчика. 

Что же,  в результате схема получилась максимально сбалансированной, универсальной и работоспособной. Надеюсь, материал кому-то был полезен. Спасибо. Удачных решений вам.

Ссылки на основные компоненты:

Светодиодная лента RGBW и др.

LM358

Транзистор 2n5551

Электретный конденсаторный микрофон

Подстроечный резистор

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий