Взаимозаменяем потенциометр, джойстик и энкодер в схемах на Arduino (Часть I)

Широтно-импульсная модуляция, сокращенно ШИМ, может быть реализована на Arduino несколькими способами. В этой статье объясняются простые методы ШИМ, а также методы использования этих регистров для точного контроля над рабочим циклом и частотой.

Расшифровка и определение ШИМ

Модуляция ширины импульса означает, что ширина импульса возникает строго в прямоугольной волне.

Это улучшает управление двигателем. Вместо чистого сигнала постоянного тока к двигателю используется серия импульсов. Они могут находиться на максимальном напряжении, но только на долю секунды. Выполнение повторных действий приведет к тому, что двигатель начнет вращаться. Это позволит более комфортно управлять скоростью. Простое применение сигнала постоянного тока не приведет к преодолению трения двигателя и передач, наоборот, запуск будет обрывистый с низкой скоростью.

Увеличивая частоту импульсов ШИМа на Ардуино, можно выполнять операции на высокой скорости.

Декодер создает этот сигнал для управления двигателем. Это та же концепция, что и функции мощности импульса, находящиеся на блоках питания постоянного тока.

Рассмотрим основные преимущества использования ШИМ Ардуино:

  1. Эффективность электропитания: индукция обмоток ротора будет усреднять ток (индукторы сопротивляются изменению тока). Транзисторы имеют низкий импеданс при низком падении напряжения и рассеивании мощности. Резистор рассеивает большую мощность (I2R) в виде тепла.
  2. Управление скоростью: двигатель будет видеть источник с низким импедансом, даже если он постоянно переключается между высоким и низким напряжением. Результат очевиден – двигатель ускоряется. Серийное сопротивление приведет к тому, что двигатель будет испытывать малое напряжение, поэтому легко остановится в нужный момент.
  3. Цепь управления: для цифровой электроники (например, микроконтроллера ) очень легко включать или выключать напряжение с помощью транзисторов. Аналоговый выход (с электронным или механическим управлением) требует большего количества компонентов и увеличивает рассеивание мощности. Это будет более дорогостоящим вариантом, с точки зрения электроники и требований к электропитанию.

Создать широтно-импульсный модулятор можно на esp8266 шим, на Ардуино УНО и Ардуино Нано шим. То есть для конструирования подойдет любая модель описываемого микроконтроллера.

Формирование аналогового сигнала

AnalogRead – это функция, которая используется для считывания аналоговых значений из аналоговых контактов ШИМа на Ардуино. Плата Arduino UNO имеет 6-канальный 10-битный аналого-цифровой преобразователь (АЦП). Это означает, что АЦП в Arduino UNO будет отображать входные напряжения от 0 до 5 В в целое значение от 0 до 1023.

Следовательно, функция analogRead возвращает любое значение от 0 до 1023. Синтаксис функции analogReadanalogRead (аналоговый вывод no).

Поскольку мы считываем аналоговые напряжения от потенциометра на выводе A0, нам нужно написать analogRead (A0) в эскизе. Когда он возвращает целочисленное значение, с ним создается временная переменная целочисленного типа данных. Следующая функция – analogWrite. Это функция, которая используется для установки рабочего цикла сигнала ШИМ для любого заданного штыря ШИМ.

Синтаксис функции analogWrite – analogWrite (вывод PWM no, value).

Значение указывает рабочий цикл и должно быть значением от 0 (0 В) до 255 (5 В).

Перейдем к фактическому эскизу схемы управления яркостью светодиода. Окончательный эскиз показан на следующем рисунке.

Из приведенного выше эскиза мы можем легко понять, что значение, возвращаемое функцией analogRead, сохраняется в переменной temp. Это значение будет использоваться для управления рабочим циклом сигнала ШИМ с помощью функции analogWrite.

Но диапазон значений, принимаемых функцией analogWrite, находится в диапазоне от 0 до 255. Следовательно, нам нужно выполнить некоторые математические вычисления, чтобы поместить подходящее значение в функцию analogWrite.

Наконец, вычисленное значение помещается в функцию analogWrite вместе с выводом PWM для получения сигнала PWM.

Когда схема построена, и эскиз загружен в Arduino, мы видим, что, изменяя положение потенциометра, яркость светодиода мы также можем изменить.

Еще  один вариант скетча для Ардуино:

int ledPin = 3;        // объявляем пин, управляющий светодиодом  int brightness = 0;    // переменная для задания яркости  int fadeAmount = 5;    // шаг изменения яркости    void setup() {    pinMode(ledPin, OUTPUT);  }    void loop() {    analogWrite(ledPin, brightness); // устанавливаем яркость brightness на выводе ledPin      brightness += fadeAmount; // изменяем значение яркости      /* при достижении границ 0 или 255        меняем направление изменения яркости */    if (brightness == 0 || brightness == 255) {       fadeAmount = -fadeAmount; // изменяем знак шага    }    delay(30); // задержка для большей видимости эффекта  }

Широтно-импульсные модуляторы в Ардуино

Чтобы использовать частотный ШИМ на Arduino Uno, нужно всего лишь установить один из ШИМ-выводов в качестве выхода, затем вызывать команду analogWrite и установить уровень. Частота установлена ​​примерно на 500 Гц, поэтому не нужно беспокоиться об этой части.

Мы выбираем контакт под номером 3, устанавливаем его, как output, и analogWrite значение для него. При выборе выхода у нас есть 256 уровней на выбор. Уровень рабочего цикла можно установить между номерами 0 и 255, где 0 – рабочий цикл 0 %, а 255 – 100 % рабочего цикла.

Последний вывод микроконтроллера на плате Arduino Uno составляет 5 В. Чтобы установить светодиод, который мы выбрали для полной яркости, нам необходимо подать напряжение 3,3 В и 15 мА тока. Для этого мы понижаем напряжение на резисторе 100 Ом.

Увеличение частоты и разрядности ШИМ Ардуино

Для изменения частоты ШИМа Ардуино в большую сторону необходимо обратиться к следующей инструкции.

Когда высокочастотный ШИМ-сигнал фильтруется, его небольшой компонент всегда будет проходить через фильтр. Это происходит потому, что конденсатор слишком мал, чтобы полностью его фильтровать. Можно было бы выбрать большую комбинацию конденсаторов и резисторов, но тогда потребуется долгое время для достижения надлежащего выходного напряжения при зарядке конденсатора.

Это значительно ограничило бы то, как быстро сигнал может измениться и быть видимым на выходе. Поэтому нужно выбрать разумное значение напряжения пульсации. Популярным приложением было бы изменение напряжения MOSFET. Поскольку МОП-транзисторы являются устройствами, контролирующими напряжение, можно легко управлять ими с помощью нашего микроконтроллера с ШИМ и фильтром нижних частот. На выходе будет присутствовать любое пульсационное напряжение, присутствующее на входе.

Рис.: а) структура МОП ПТ с индуцированным каналом. б) графическое изображение.

В этом примере предположим, что MOSFET будет управлять не критической нагрузкой, такой, как светодиод высокой мощности. В этом случае нам просто нужно оставаться в разумных пределах, поэтому пиковый ток в светодиоде не будет превышен. В этом случае пульсация в 0,1 вольта была бы более чем достаточной.

Примеры использования ШИМ на Ардуино

Широкополосная широтно-импульсная модуляция является способом кодирования напряжения на фиксированную несущую частоту. Он обычно используется для радиоуправляемых устройств. Каждый тип схемы модуляции имеет свои преимущества и недостатки.

AM-модуляция была первым типом модуляции, используемой для радиопередач. Самая простая схема модуляции для реализации требует только одного транзистора или усилителя вакуумной трубки, как это было сделано в первые дни с момента создания радио.

С необходимостью цифровой связи был изобретен новый метод модуляции – ШИМ. Этот метод обладает той же помехоустойчивостью, что и радиоволны. Самая большая разница – простота и цифровая природа модуляции. Вместо того, чтобы изменять частоту модуляции с напряжением, выход просто включается и выключается с фиксированной частотой. Процент времени включения пропорционален сигнальному напряжению.

Давайте вспомним предыдущую статью о том, как сделать гирлянду на Arduino и попробуем выполнить новую задачу. Думаю, что все видели новогодние витринные гирлянды, в которых плавно мигают светодиоды. Допустим, что мы хотим сделать нечто подобное. Мы уже рассматривали функцию digitalWrite() и знаем, что значение, которое она записывает, может быть двух вариантов — высокий или низкий уровень. В данном случае нам поможет функция analogWrite(). «Формулировки» функций различаются только начальными приставками, поэтому их легко запомнить. Функция analogWrite(), так же как и digitalWrite(), содержит в скобках два аргумента и работает по тому же словесному принципу: «куда, что». Главным различием является возможность записи широкого диапазона значений вместо привычного LOW или HIGH. Это и позволит нам регулировать яркость светодиода. Главное замечание, которое необходимо учитывать, это то, что данная функция работает только на определенных контактах. Эти контакты обозначены символом «~». Этот символ означает, что это PWM-контакт. PWM (pulse-width modulation) звучит по-русски как ШИМ (широтно-импульсная модуляция). Принцип работы основан на изменении длительности импульса. Графически это можно изобразить так: Давайте попробуем разобраться как это работает, рассмотрев простой пример. Для этого необходимо подключить светодиод к PWM-контакту через резистор номиналом 150 Ом и «зашить» в Arduino простенькую программу. Схема подключения и код скетча представлены ниже:

int led = 11; void setup() {   pinMode(led,OUTPUT); } void loop() {   for(int i=0; i<=255; i++)     {     analogWrite(led,i);     delay(10);     }   for(int i=255; i>=0; i--)     {     analogWrite(led,i);     delay(10);     } }

Думаю, что в целом код понятен, но необходимо уделить немного внимания циклу for(). Существует такое понятие как разрешение. Поскольку мы работаем с 8-битным разрешением (это будет рассмотрено несколько позднее), то минимальному значению будет соответствовать 0, а максимальному — 255. В конце каждой итерации мы установили временную задержку в 10мс. Давайте вернемся к схеме из предыдущего урока и попробуем сделать аналогичную гирлянду с использованием функции analogWrite().

int buttonPin = 2; int pins[] = {3,5,6,9,10,11}; boolean lastButton = LOW; boolean currentButton = LOW; boolean enable = false; void setup() {   pinMode(buttonPin, INPUT);   for(int mode = 0; mode <= 5; mode++) pinMode(pins[mode], OUTPUT); } boolean debounce(boolean last) {   boolean current = digitalRead(buttonPin);   if(last != current)   {     delay(5);     current = digitalRead(buttonPin);   }   return current; } void loop() {   currentButton = debounce(lastButton);   if(lastButton == LOW && currentButton == HIGH)     {     enable = !enable;     }   if(enable == true)   {   for (int i=0; i<=5; i++)     {     for (int brightness = 0; brightness <= 255; brightness++)       {       analogWrite(pins[i], brightness);       delay(1);       }     delay(40);     }     for (int i=0; i<=5; i++)     {     for (int brightness = 255; brightness >= 0; brightness--)       {       analogWrite(pins[i], brightness);       delay(1);       }     delay(40);     }   }     if(enable == false)   {   for(int i = 0; i <= 5; i++) digitalWrite(pins[i], LOW);   }     lastButton = currentButton; }</code>

Визуально скетч стал несколько сложнее. На самом деле здесь все просто и давайте в этом разберемся. Нам необходимо идентифицировать все подключенные светодиоды, но вместо привычного int led мы используем массив, каждый элемент которого является PWM-контактом на Arduino. В теле функции void setup() мы тоже поступили хитрым образом. «Перечислять» все контакты мы доверили циклу for(), с каждой итерацией которого производится конфигурация соответствующего контакта на OUTPUT. Переходим к функции void loop(). Функция debounce() и начальное условие if() остается без изменений. У нас по-прежнему идет проверка уровней двух переменных: предыдущее значение (изначально LOW) и текущее состояние кнопки. При выполнении этих условий значение переменной enable инвертируется. Учитывая это, мы добавили еще два простых условия if(). Если enable = true, то гирлянда включается, плавностью «перетекания» которой управляет цикл for(). Если же enable = false, то все светодиоды выключены. По окончанию условий переменная lastButton принимает текущее состояние кнопки. Тестируя нашу программу, мы заметили, что все работает не должным образом. Помните, в прошлом уроке мы сделали поправку, что при большом значении временной задержки кнопка срабатывает по её истечению? В прошлом примере, при включенной гирлянде, суммарная задержка в теле функции void loop() составляла 85мс. Это давало нам возможность успеть «попасть» в определенной отрезок времени. В данном скетче, при том же условии, задержка отличается в несколько раз. Возможно, при желании выключить гирлянду напрашивается слово «прервать». Это и будет являться решением данной задачи! Надеюсь, что эта статья была для Вас полезной. В следующем уроке мы рассмотрим прерывания в Arduino и добьемся должного результата.

Широтно-импульсная модуляция Arduino выполняется с частотой 488,28 Гц с помощью функции analogWrite на аналоговых выводах, но частоту ШИМ можно изменить.

Широтно-импульсная модуляция (ШИМ) Arduino UNO и NANO работает на аналоговых выходах 3, 5, 6, 9, 10, 11 с частотой 488,28 Гц. С помощью функции analogWrite частота ШИМ изменяется в диапазоне 0 до 255 и соответствует коэффициенту заполнения импульса от 0 до 100 %. Для многих устройств частота PWM Arduino NANO слишком мала, поэтому ее требуется увеличить. Рассмотрим, как это правильно сделать.

ШИМ, по-английски Pulse-Width Modulation (PWM) — это управление мощностью на нагрузке с помощью изменения скважности (ширины) импульсов при постоянной частоте и амплитуде сигнала. На следующем графике видно, что при разных значениях в функции analogWrite , амплитуда импульсов остается постоянной, но меняется ширина импульсов. Мощность сигнала определяет коэффициент заполнения импульса.

График. Параметры сигнала, коэффициент заполнения ШИМ

Можно выделить две области применения широтно-импульсной модуляции:

1. PWM используется в источниках питания, регуляторах мощности и т.д. Применение ШИМ на Arduino Nano позволяет значительно упростить управление яркостью источников света (светодиодов, LED-ленты) и скоростью вращения двигателей.

2. PWM используется для получения аналогового сигнала. Цифро-аналоговый преобразователь (ЦАП) на Ардуино прост в реализации, так как требует минимума радиоэлементов — достаточно одной RC цепочки из резистора и конденсатора.

Платы Arduino Uno и Arduino Nano на базе ATmega168/328 имеют 6 аппаратных ШИМ модуляторов на аналоговых портах 3, 5, 6, 9, 10, 11. Управление ШИМ сигналом осуществляется с помощью функции analogWrite , которая генерирует на выходе аналоговый сигнал и задает коэффициент заполнения импульса. Arduino устанавливает на выводах частоту 488,28 Гц и разрешение 8 разрядов (от 0 до 255).

Схема. Широтно-импульсная модуляция для чайников

В Arduino на базе ATmega168/328 для ШИМ используются три таймера:

Таймер 0 — выводы 5 и 6 Таймер 1 — выводы 9 и 10 Таймер 2 — выводы 3 и 11

ШИМ Ардуино определяется интегральными компонентами, называемыми таймерами. Каждый таймер в платах Arduino Uno и Nano на базе микроконтроллера ATmega168/328 имеет по два канала, подключенных к выходам. Для изменения частоты PWM сигнала требуется изменение таймера, к которому он подключается. При этом PWM изменится и на аналоговых выходах, подключенных параллельно к этому же таймеру.

Не существует способа изменить частоту ШИМ Arduino без прямого управления памятью на низком уровне. Рассмотрим далее, как изменить режим работы таймера, чтобы увеличить частоту (frequency) ШИМ Ардуино. Таймер 0 используется для расчета времени, т.е. функции delay и millis . Увеличение частоты на Таймер 0 приведет к нарушению функций сохранения времени, которые могут использоваться в скетче.

Чтобы увеличить разрядность Ардуино на 9 и 10 аналоговом выходе, изменим частоту Таймера 1 без библиотеки. Максимальная частота PWM может достигать на платах Ардуино Уно и Нано — 62 500 Гц. Для этого в процедуре void setup() необходимо добавить соответствующую команду из таблицы, которая приведена далее.

Разрешение Частота ШИМ Команды установки режима
8 бит 62 500 Гц
7 812,5 Гц
976,56 Гц
244,14 Гц
61,04 Гц

Максимальная частота ШИМ Ардуино (Arduino PWM Frequency) — 62 500 Гц.

Читайте также:  Amd athlon 64 x2 ad03800iaa5cs характеристики

Широтно-импульсная модуляция Arduino выполняется с частотой 488,28 Гц с помощью функции analogWrite на аналоговых выводах, но частоту ШИМ можно изменить.

Широтно-импульсная модуляция (ШИМ) Arduino UNO и NANO работает на аналоговых выходах 3, 5, 6, 9, 10, 11 с частотой 488,28 Гц. С помощью функции analogWrite частота ШИМ изменяется в диапазоне 0 до 255 и соответствует коэффициенту заполнения импульса от 0 до 100 %. Для многих устройств частота PWM Arduino NANO слишком мала, поэтому ее требуется увеличить. Рассмотрим, как это правильно сделать.

Широтно-импульсная модуляция Arduino

ШИМ, по-английски Pulse-Width Modulation (PWM) — это управление мощностью на нагрузке с помощью изменения скважности (ширины) импульсов при постоянной частоте и амплитуде сигнала. На следующем графике видно, что при разных значениях в функции analogWrite , амплитуда импульсов остается постоянной, но меняется ширина импульсов. Мощность сигнала определяет коэффициент заполнения импульса.

График. Параметры сигнала, коэффициент заполнения ШИМ

Можно выделить две области применения широтно-импульсной модуляции:

1. PWM используется в источниках питания, регуляторах мощности и т.д. Применение ШИМ на Arduino Nano позволяет значительно упростить управление яркостью источников света (светодиодов, LED-ленты) и скоростью вращения двигателей.

2. PWM используется для получения аналогового сигнала. Цифро-аналоговый преобразователь (ЦАП) на Ардуино прост в реализации, так как требует минимума радиоэлементов — достаточно одной RC цепочки из резистора и конденсатора.

Изменение частоты ШИМ Ардуино (разрядности)

Платы Arduino Uno и Arduino Nano на базе ATmega168/328 имеют 6 аппаратных ШИМ модуляторов на аналоговых портах 3, 5, 6, 9, 10, 11. Управление ШИМ сигналом осуществляется с помощью функции analogWrite , которая генерирует на выходе аналоговый сигнал и задает коэффициент заполнения импульса. Arduino устанавливает на выводах частоту 488,28 Гц и разрешение 8 разрядов (от 0 до 255).

Схема. Широтно-импульсная модуляция для чайников

В Arduino на базе ATmega168/328 для ШИМ используются три таймера:

Таймер 0 — выводы 5 и 6 Таймер 1 — выводы 9 и 10 Таймер 2 — выводы 3 и 11

ШИМ Ардуино определяется интегральными компонентами, называемыми таймерами. Каждый таймер в платах Arduino Uno и Nano на базе микроконтроллера ATmega168/328 имеет по два канала, подключенных к выходам. Для изменения частоты PWM сигнала требуется изменение таймера, к которому он подключается. При этом PWM изменится и на аналоговых выходах, подключенных параллельно к этому же таймеру.

Как увеличить частоту и разрядность ШИМ Ардуино

Не существует способа изменить частоту ШИМ Arduino без прямого управления памятью на низком уровне. Рассмотрим далее, как изменить режим работы таймера, чтобы увеличить частоту (frequency) ШИМ Ардуино. Таймер 0 используется для расчета времени, т.е. функции delay и millis . Увеличение частоты на Таймер 0 приведет к нарушению функций сохранения времени, которые могут использоваться в скетче.

Чтобы увеличить разрядность Ардуино на 9 и 10 аналоговом выходе, изменим частоту Таймера 1 без библиотеки. Максимальная частота PWM может достигать на платах Ардуино Уно и Нано — 62 500 Гц. Для этого в процедуре void setup() необходимо добавить соответствующую команду из таблицы, которая приведена далее.

Разрешение Частота ШИМ Команды установки режима
8 бит 62 500 Гц
7 812,5 Гц
976,56 Гц
244,14 Гц
61,04 Гц

Максимальная частота ШИМ Ардуино (Arduino PWM Frequency) — 62 500 Гц.

В уроке узнаем о широтно-импульсной модуляции, о реализации этого способа управления в контроллерах Ардуино, о режимах и функциях работы с ШИМ в Ардуино.

Прервемся на урок от разработки контроллера холодильника, для того чтобы научиться работать с широтно-импульсным модулятором Ардуино.

Читайте также:  Прошивка роутера xiaomi mi wifi mini

В нашей разработке используется именно такой способ регулирования мощности на элементе Пельтье.

Широтно-импульсная модуляция.

Широтно-импульсная модуляция (ШИМ) это способ управления мощностью на нагрузке с помощью изменения скважности импульсов при постоянной амплитуде и частоте импульсов.

Можно выделить две основные области применения широтно-импульсной модуляции:

  • Во вторичных источниках питания, различных регуляторах мощности, регуляторах яркости источников света, скорости вращения коллекторных двигателей и т.п. В этих случаях применение ШИМ позволяет значительно увеличить КПД системы и упростить ее реализацию.
  • Для получения аналогового сигнала с помощью цифрового выхода микроконтроллера. Своеобразный цифро-аналоговый преобразователь (ЦАП). Очень простой в реализации, требует минимума внешних компонентов. Часто достаточно одной RC цепочки.

Принцип регулирования с помощью ШИМ – изменение ширины импульсов при постоянной амплитуде и частоте сигнала.

На диаграмме можно увидеть основные параметры ШИМ сигнала:

  • Ui — амплитуда импульсов ;
  • Ton – время активного (включенного) состояния сигнала;
  • Toff – время отключенного состояния сигнала;
  • Tpwm – время периода ШИМ.

Даже интуитивно понятно, что мощность на нагрузке пропорциональна соотношению времени включенного и отключенного состояния сигнала.

Это соотношение определяет коэффициент заполнения ШИМ:

Он показывает, какую часть периода сигнал находится во включенном состоянии. Может меняться:

  • от 0 – сигнал всегда выключен;
  • до 1 — сигнал все время находится во включенном состоянии.

Чаще используют процентный коэффициент заполнения. В этом случае он находится в пределах от 0 до 100%.

Среднее значение электрической мощности на нагрузке строго пропорционально коэффициенту заполнения. Когда говорят, что ШИМ равен, например, 20%, то имеют в виду именно коэффициент заполнения.

Формирование аналогового сигнала.

Если сигнал ШИМ пропустить через фильтр низких частот (ФНЧ), то на выходе фильтра мы получим аналоговый сигнал, напряжение которого пропорционально коэффициенту заполнения ШИМ.

В качестве ФНЧ можно использовать простейшую RC цепочку.

Из-за неидеальной характеристики такого фильтра частота среза должна быть минимум на порядок меньше частоты ШИМ. Для простого RC фильтра частота среза вычисляется по формуле:

  • При повышении частоты среза ФНЧ на выходе фильтра увеличиваются пульсации с частотой ШИМ.
  • При уменьшении частоты среза фильтра снижается время реакции выходного аналогового сигнала на изменения ширины импульсов.

Из этого вытекает главный недостаток широтно-импульсной модуляции. Метод способен синтезировать только достаточно медленные аналоговые сигналы или требует применения фильтров низких частот с высокой добротностью, сложных в реализации.

Я бы рекомендовал:

  • В случае, когда к быстродействию аналогового сигнала жестких требований нет выбирать заведомо заниженную частоту среза фильтра.
  • Если необходимо оптимизировать быстродействие аналогового преобразователя, то лучше промоделировать схему.

Даже простейшие моделирующие программы вычисляют уровень пульсаций достаточно точно. Вот результаты моделирования на SwCAD для ШИМ частотой 500 Гц и RC фильтрами с частотами среза 500 Гц, 50 Гц и 5 Гц. Зеленым цветом показана диаграмма ШИМ, синим – напряжение на выходе RC фильтра.

Частота среза 500 Гц (10 кОм, 32 нФ).

Частота среза 50 Гц (10 кОм, 320 нФ).

Частота среза 5 Гц (10 кОм, 3,2 мкФ).

Точность преобразования широтно-импульсных модуляторов определяется погрешностью амплитуды импульсов (т.е. стабильностью питания микроконтроллера) и значением падения напряжения на ключах цифровых выходов микроконтроллера. Как правило, точность ШИМ микроконтроллеров невысока. Добиться высокой точности ШИМ преобразования можно с помощью дополнительной схемы с аналоговыми ключами и источником опорного напряжения.

К недостаткам использования широтно-импульсных модуляторов в качестве ЦАП также следует отнести высокое выходное сопротивление. Оно определяется сопротивлением резистора RC фильтра и не может быть низким из-за малой нагрузочной способности выходов микроконтроллера.

Широтно-импульсные модуляторы в Ардуино.

Платы Ардуино на базе микроконтроллеров ATmega168/328 имеют 6 аппаратных широтно-импульсных модуляторов. Сигналы ШИМ могут быть сгенерированы на выводах 3, 5, 6, 9, 10, 11.

Управление аппаратными ШИМ осуществляется с помощью системной функции analogWrite().

Читайте также:  Как отрегулировать чувствительность мыши

void analogWrite(pin, val)

Функция переводит вывод в режим ШИМ и задает для него коэффициент заполнения. Перед использованием analogWrite() функцию pinMode() для установки вывода в режим “выход” вызывать необязательно.

  • pin – номер вывода для генерации ШИМ сигнала.
  • val – коэффициент заполнения ШИМ. Без дополнительных установок диапазон val от 0 до 255 и соответствует коэффициенту заполнения от 0 до 100 %. Т.е. разрядность системных ШИМ в Ардуино 8 разрядов.

analogWrite(9, 25); // на выводе 9 ШИМ = 10%

Частота ШИМ Ардуино 488,28 Гц.

Для генерации ШИМ используются все три таймера Ардуино.

Таймер Используется для генерации ШИМ на выводах
Таймер 0 выводы 5 и 6
Таймер 1 выводы 9 и 10
Таймер 2 выводы 3 и 11

Если таймер используется для других целей, например для прерывания, то параметры ШИМ соответствующих выводов могут не соответствовать указанным выше.

Поэтому, при использовании библиотек MsTimer2, TimerOne или им подобных некоторые выводы в качестве ШИМ сигналов использовать нельзя.

Увеличение частоты и разрядности ШИМ Ардуино.

Система Ардуино устанавливает на всех выводах ШИМ параметры:

  • частота 488,28 Гц;
  • разрешение 8 разрядов (0…255).

Очень низкая частота. Для большинства приложений совершенно не допустимая.

В разработке контроллера элемента Пельтье, начатой в предыдущем уроке, частота ШИМ должна быть не менее 30-50 кГц. В интернете достаточно много предложений по увеличению частоты ШИМВо всех описываются методы увеличения частоты до 31 кГц. В принципе приемлемый вариант, но мне захотелось большего.

Я разобрался с Таймером 1 микроконтроллера ATmega168/328, перевел ШИМ в быстродействующий режим и добился частоты ШИМ Ардуино до 62,5 кГц. Заодно я научился менять разрядность ШИМ. Чтобы в следующий раз не копаться в документации на микроконтроллеры ATmega168/328 я свел всевозможные варианты ШИМ для таймера 1 в таблицу.

Строчки из правого столбца для выбранного варианта необходимо написать в функции setup().

Варианты параметров ШИМ на выводах 9 и 10 Ардуино (таймер 1).

Разрешение Частота ШИМ Команды установки режима
8 бит 62 500 Гц
7 812,5 Гц
976,56 Гц
244,14 Гц
61,04 Гц
9 бит 31 250 Гц
3 906,25 Гц
488,28 Гц
122,07 Гц
30,52 Гц
10 бит 1 5625 Гц
1 953,13 Гц
244,14 Гц
61,04 Гц
15,26 Гц

Следующий скетч генерирует на выводе 9 ШИМ с частотой 62,5 кГц и коэффициентом заполнения примерно 10 %.

void setup() <</em> // ШИМ 8 разрядов, 62,5 кГц TCCR1A = TCCR1A & 0xe0 | 1; TCCR1B = TCCR1B & 0xe0 | 0x09; analogWrite(9, 25); // на выводе 9 ШИМ=10% >

Это максимально возможная частота ШИМ Ардуино для большинства плат (с частотой генератора 16 мГц).

В следующем уроке вернемся к разработке контроллера элемента Пельтье.

У каждого из этих устройств есть свои особенности, которые определяют практичность их применения в определенных проектах. Но иногда возникают ситуации, когда под рукой нет энкодера, а крутить и шевелить чем-то нужно. И тогда, пошевелив собственными извилинами, можно прийти к решению заменить одно другим для экономии времени и денег.

image

Приветствую всех поклонников и поклонниц Arduino на сайте магазина Amperkot.ru. С этой статьи я начинаю интересную тему “Взаимозамена потенциометра, джойстика и энкодера в различных проектах”. Этот большой и структурированный объем материала будет полезен начинающим и более продвинутым пользователям.

На примере простых проектов будет разобрано и изучено много полезного материала, но самое главное, что после прочтения всего цикла, 95% из Вас будут знать намного больше, чем ранее. Ваш покорный слуга будет намеренно моделировать проблемы (которые могут встретиться и в реальной жизни), чтобы подтянуть гибкость и остроту мышления читателя в теме Arduino!

Введение

Итак, потенциометр, джойстик и энкодер. Всё на первый взгляд просто.

У каждого из этих устройств есть свои особенности, которые определяют практичность их применения в определенных проектах. Но иногда возникают ситуации, когда под рукой нет энкодера, а крутить и шевелить чем-то нужно. И тогда, пошевелив собственными извилинами, можно прийти к решению заменить одно другим для экономии времени и денег.

В этом цикле статье основной уклон идет на получение навыков работы со всеми тремя модулями сразу в проектах на Arduino и её аналогов на случай банального отсутствия необходимого компонента. Именно по этой причине сильно углубляться в электротехнику, а также описывать подробно принцип работы с физической точки зрения не считаю нужным.

Я рассмотрю несколько несложных схем (управление яркостью светодиода, изменение мощности двигателя, навигация по меню LCD дисплея) и подробно объясню, как пишется код во всех случаях. В некоторых случаях мы неизбежно будем сталкиваться с трудностями, которые только сильнее приблизят нас к истине и пониманию некоторых тем!

А теперь кратко о трех наших героях!

Немного теории

Потенциометр — он же переменный резистор, он же “какая-то крутилка с ручкой”, предлагает нам пропорционально изменять сопротивление внутри устройства в зависимости от положения ручки. На его выходе получаем напряжение (в зависимости от подключения контактов питания, в крайних положениях ручки, получаем значения 0 и 5 вольт, так как плата Arduino выдает максимальное напряжение 5 вольт) которое с помощью Ардуино преобразуется в цифровые значения от 0 до 1023. Оперируя ими, можно влиять на параметры различных устройств.

Энкодер — это уже крутилка с ручкой и кнопкой, но важным изменением в практическом смысле является то, что у потенциометра диапазон вращения ручки ограничен минимальным и максимальным значениями, а у энкодера ручка вращается безостановочно все стороны. В теоретическом плане тоже есть отличие — при изменении угла поворота ручки энкодера меняются значения двух сигналов, генерируемых устройством на выходах DT и CLC. Они сообщают контроллеру о направлении и скорости вращения ручки.

Джойстик — устройство для ввода данных по двум осям: OX и OY, а также с помощью встроенной кнопки. В состоянии покоя напряжение на этих контактах равняется 2,5 вольтам, а с помощью перемещению стика изменяется в диапазоне от 0 до 5 вольт. Основное отличие джойстика от энкодера и потенциометра — выходные значения не сохраняются, так как стик не фиксируется и всегда возвращается в исходное положение

Подготовимся заранее

Прежде, чем начать практическим путем получать полезные навыки, подготовим компоненты, которые нам понадобятся. Купить их Вы можете на сайте интернет-магазина Amperkot.ru по вполне себе демократичным ценам!

Да и говоря в целом — покупать в некоторых российских магазинах бывает выгоднее, чем в Китае, так как Вы в течение быстрого времени получаете нужные компоненты, экономите время, (а значит деньги тоже), а также можете рассчитывать на быструю поддержку технического специалиста и гарантию на купленный товар.

А если Вы живете в одной из двух столиц России: Санкт-Петербурге или Москве, то сможете получить необходимое в течение дня (самовывоз). Очень даже удобно!

Вот список компонентов, которые нам понадобятся в этих уроках:

— Плата Arduino Uno + usb кабель в комплекте для подключения к компьютеру — Беспаечная макетная плата (число точек не принципиально важно) — Потенциометр на 10кОм — Модуль энкодера (либо обычный энкодер, но тогда будете дольше и усерднее его подключать к плате) — Модуль джойстика — Резисторы 220 Ом — Резисторы 10 кОм — Керамические конденсаторы на 100 мкФ (?) — Перемычки “папа-папа” и “папа-мама” (по 20 штук каждого типа будет достаточно). — Светодиоды 5 мм

А теперь к практике

Наша с Вами задача — научиться находить нестандартные выходы из любых проблем и не опускать руки, поэтому смоделируем эти самые ситуации и поработаем с кодом!

Пример 1.1: Регулировка яркости светодиода потенциометром

Практичнее всего в данном случае использовать потенциометр. Для начала подключим все по схеме:

image

Обратите внимание, что в схеме не используется подтягивающий резистор. Такие резисторы (чаще всего номиналом от 10 до 30 кОм) используются для уменьшения помех в данных, передаваемых через аналоговый сигнал. Но многие забывают, что в плату Arduino уже встроены такие резисторы на каждый контакт. В данной же ситуации использовать его нет смысла, так текущая задача не требуется высокой точности значений. Но в следующих частях этого большого ликбеза эта тема обязательно будет освещена!

image

Настало время написать код. В следующих нескольких абзацах я позволю себе написать небольшое руководство по структуре написания кода на Arduino, чтобы начинающие не чувствовали себя некомфортно:) Все, кто уже обладают этими базовыми навыками, — можете пропустить этот текст, либо постараться почерпнуть для себя что-нибудь новое.

Для начала посчитаем, сколько устройств ввода и вывода информации мы используем в нашей схеме: их два — переменный резистор и светодиод. Теперь обозначим их в коде.

Сделаем это с помощью констант (ячейки памяти в контроллере). Используя директиву #define, мы создаем ячейку памяти, в которой будет храниться значение пина платформы Arduino, которому соответствует подключенное устройство.

Чтобы понимать, где будет храниться информация, и легко к ней обращаться в будущем, назовем каждую из констант удобными словами (led, pot), а после оператора присваивания (‘=’) записываем данные, которые будем хранить в конкретной ячейке. В нашем случае, это номера пинов платы Arduino, к которым подключаются наши устройства. Выглядит это так:

image

Далее в коде идут две обязательные функции — void setup() и void loop(). В первой пишется то, что контроллер обработает только один раз (сразу после подачи питания), а во второй прописываются уже конкретные действия, которые мы хотим выполнять с нашими устройствами на протяжении всей работы кода. Код обрабатывается сверху вниз, однако после выполнения последней команды в void loop() контроллер возвращается в начало функции void loop() и продолжает выполнять те же самые действия в том же самом порядке. Так и проявляется цикличность. Не зря loop переводится с английского, как “петля”.

image

Ранее мы выяснили, что в нашей схеме будет два устройства. Им мы дали имена при помощи констант. Теперь определимся с тем, что они должны будут выполнять. Поставим задачу — пропорциональное изменение яркости светодиода при вращении ручки потенциометра.

Теперь классифицируем устройства по их назначению: устройства ввода и вывода данных (относительно платы Arduino конечно же). Когда мы крутим ручку потенциометра, то мы лично изменяем значения на его сигнальном контакте, которые затем считываются на аналоговом пине и обрабатываются контроллером. Это те данные, которые поступают/вводятся в контроллер, а значит и потенциометр будет устройством ввода данных.

После кручения ручки контроллер должен посылать сигнал уже на светодиод, чтобы тот светился с определенной яркостью. Эти данные выводятся из контроллера. А значит светодиод — устройство вывода данных.

Оперируя этими данными, запишем назначение этих устройств в функции void setup (контроллеру достаточно один раз понять, с какими типами устройств он имеет дело, чтобы продолжить работу с ними). Делается это с помощью функции pinMode (номер пина с подключенным устройством, режим работы для данного пина). Для устройств ввода данных — INPUT, а для устройств вывода данных — OUTPUT.

image

Имеются два типа контактов: цифровые (могут выдавать только два значения: 1 и 0, как реле или выключатель) и аналоговые (диапазон значений от 0 до 1023). Есть еще ШИМ контакты (это некоторые цифровые контакты, но со встроенным аналого-цифровым преобразователем, обозначаются на плате вот таким значком ~): они могут работать в обоих режимах. Все зависит от того, как Вы это пропишете в коде.

Далее самые распространенные функции ввода (чтения) и вывода (написания команды) данных — Write и Read. Запомнить их очень просто: если мы хотим считать данные с пина контроллера, то иначе говоря, хотим прочесть их (как с открытой книги), а значит пишем после типа контакта (digital или analog) слово Read (с английского языка “читать”). В случае вывода данных можно представить, что мы прописываем команду нашему устройству сделать то или иное действие (в нашем случае — команда светодиоду включиться). Писать с английского языка “write”.

Так и получаются эти функции путем объединения двух различных слов: digitalWrite, digitalread, analogWrite, analogRead.

Для функций с чтением данных прописываем в скобках только один параметр (номер пина, с которого происходит считывание): analogRead (pot).

Для функций с выводом данных прописываем в скобках два параметра: номер пина и значение сигнала. Таким образом яркость светодиода будет настраиваться функцией analogWrite (номер пина, к которому подключен светодиод, логическое значение). Не забывайте, что для цифровых пинов допустимо на месте второго параметра писать значения 1 или HIGH (высокий логический уровень) и 0 или LOW (низкий логический уровень), а для аналоговых или цифровых с поддержкой ШИМ число от 0 до 255 (на выводе Arduino может генерировать только такой диапазон значений).

Для текущей задачи, очевидно, удобнее использовать аналоговый контакт для получения данных с сигнального контакта потенциометра. Эти данные нужно как-то посчитать. Используем функцию analogRead (pot).

Чтобы эти данные было удобнее использовать в процессе работы кода, их нужно сохранить в новую ячейку памяти — переменную. Она создается также, как и константа, только вместо #define пишется тип переменной (который определяет ее размер). Какие бывают типы переменных можно посмотреть в любой табличке в Яндекс Картинках. Нам будет достаточно целочисленного типа int. Создадим переменную с названием val (от английского value — «значение») и присвоим ей значения с вывода потенциометра. Теперь у нас появилась ячейка, в которой будут храниться эти данные. В любой момент мы можем обратиться к ней, чтобы выполнить с данными какие-либо действия.

Так как на выходе Arduino может генерировать значения от 0 до 255, то нужно пропорционально уменьшить значения с потенциометра: уменьшить их в четыре раза. Полученный результат сохраним в новую целочисленную переменную «brightness». А затем значения из этой переменной выставим в качестве второго параметра в функции analogWrite (led, brightness) — теперь на пин, которому мы дали название led, подается напряжение от 0 до 5 вольт, которое пропорционально значения с потенциометра. Задача выполнена!

Пример 1.2: Регулировка яркости светодиода джойстиком

С потенциометром никаких проблем не возникло, поскольку это самое практичное решение для подобной ситуации. Но как быть, если под рукой у Вас, скажем, джойстик? Этот модуль более функционален, поскольку имеет встроенную кнопку, а также возможность управления по двум осям (по сути это два потенциометра, расположенных перпендикулярно друг к другу).

Будем считывать значения с джойстика по оси OX, а затем при помощи функции map() преобразуем их в значения для яркости светодиода в качестве параметра функции analogWrite(). Джойстик подключим без использования обвязки, так как в случае с джойстиком помехи в данных будут меньше, а в случае со светодиодом они роли не играют. Но Вы должны помнить об этом на будущее. Контакты с плавным напряжением подключим через резисторы. Схема подключения представлена на картинке ниже:

image

По такой же логике, как и в примере 1.1 напишем код. Получаем то, что на картинке ниже:

Здесь у нас также 2 устройства, но джойстик в отличие от потенциометра позволяет считывать значения с трех разных контактов (по оси OX, по оси OY и со встроенной кнопки), поэтому введем 4 константы. В остальном — всё то же самое.

На этом первую часть можно считать завершенной! Вы можете оставлять свои вопросы в комментариях к этой статье. По возможности буду на них отвечать. Но не забывайте о правилах грамотности и адекватности! Всем желаю успехов и удачной компиляции!

Данная статья является собственностью Amperkot.ru. При перепечатке данного материала активная ссылка на первоисточник, не закрытая для индексации поисковыми системами, обязательна.

Поделиться:

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий