Содержание
- Область применения регуляторов
- Принцип работы устройства
- Рекомендации по выбору
- Характеристики самодельного контроллера
- Схема регулятора оборотов для электродвигателя
- Мощность и нагрузка регулятора оборотов
- Типы регулировки
- Изменение скорости АД с короткозамкнутым ротором
- Особенности конструкции
- Изготовление своими руками
- Принцип работы регулятора оборотов
Залогом долговечности любого двигателя является плавность его работы. Для решения поставленной задачи в коллекторных силовых установках используются регуляторы оборотов с поддержанием мощности. Эти устройства можно приобрести либо сделать своими руками.Регулятор оборотов представляет собой частотный преобразователь, в основе которого лежит мощный транзистор. Он необходим для инвертирования напряжения, а также плавной остановки (пуска) электродвигателя при помощи широко-импульсного управления электрическими устройствами или ШИМ.
Содержание
Область применения регуляторов
Простым примером такого преобразователя является стабилизатор напряжения, часто используемый в быту. Однако в сравнении с ним регулятор оборотов более функционален. Частотные преобразователи нашли широкое применение и используются во всех электроустройствах. Благодаря их применению не только обеспечивается точный контроль над работой двигателя,
но также достигается экономия электрической энергии, так как силовая установка потребляет лишь необходимую мощность, а не максимальную.
Купить регулятор оборотов двигателя без потери мощности можно для решения следующих задач:
- Контроль температуры мотора без использования дополнительных контроллеров.
- Сокращаются затраты на техническое обслуживание.
- Обеспечивается плавный пуск.
- Экономится электрическая энергия.
Устройство используется во всей бытовой технике, сварочных аппаратах и т. д.
Принцип работы устройства
В состав устройства входит три основных подсистемы:
- Электромотор.
- Микроконтроллерная система управления с блоком преобразователя.
- Привод и связанные с ним механизмы.
После того как электродвигатель был запущен, показатель силы тока в цепи достигает максимальных значений. Причем этот процесс повторяется несколько раз, что приводит к выделению большого количества тепла. В результате долговечность электродвигателя сокращается. Используемое устройство исполняет роль ступенчатого инвертора, обеспечивая двойное преобразование энергии.
В зависимости от подаваемого напряжения, частотный регулятор выпрямляет ток посредством диода, расположенного на входе схемы. Затем ток проходит дополнительную фильтрацию, благодаря нескольким конденсаторам и поступает в микросхему, формирующую ШИМ. Вследствие всех этих процессов обмотка двигателя не подвергается чрезмерной нагрузке.
Рекомендации по выбору
Есть несколько характеристик, на которые необходимо обращать внимание при выборе регулятора:
- Тип управления — в коллекторных электродвигателях используются векторные и скалярные системы управления. Первый вид чаще применяется, но второй является более надежным.
- Мощность — этот показатель должен соответствовать максимально допустимой мощности предохраняемого устройства. Если силовая установка является низковольтной, то стоит остановить выбор на регуляторе с более высоким показателем мощности в сравнении с допустимым.
- Напряжение — подбирается в соответствии с характеристиками двигателя.
- Частотный диапазон — должен полностью соответствовать поставленным задачам, например, для ручного фрезерного станка вполне достаточно 1000 Гц.
Все остальные характеристики (габариты, срок гарантии и т. д. ) можно смело считать второстепенными. На рынке достаточно много брендов, выпускающих качественные и сравнительно недорогие устройства.
Если устройство планируется использовать в домашних условиях, то порой покупать готовое не имеет смысла. С финансовой точки зрения проще изготовить регулятор оборотов с поддержанием мощности своими руками. Для этого потребуется лишь несколько радиодеталей, которые могут быть легко приобретены. Основным элементом схемы является симистор типа ВТ138−600, а для регулирования оборотов используется потенциометр (обозначен буквой Р).
Существует много схем для создания регулятора частоты вращения, но предложенная наиболее проста в изготовлении. Собранное на ее основе устройство может использоваться для решения различных задач, например, в электроприводе швейной машинки или настольного станка. Принцип работы схемы предельно прост: при замедлении вращения двигателя показатель его индукции снижается, что приводит к росту напряжения на С3, R 2 и Р с последующим открытием тиристора.
Хотя предложенная схема проста, она позволяет решить большое количество задач. При желании можно собрать более сложное устройство — тиристорный регулятор с обратной связью. Это выгодное решение с точки зрения экономии электроэнергии, но требующее большего набора знаний в области радиотехники, ведь практически все они основаны на микросхемах, например, TDA 1080.
Здравствуйте дорогие мои посетители. Хочу сегодня продолжить тему о коллекторных электродвигателях, а именно как подключить двигатель от стиральной машины с помощью платы регулирования оборотов с поддержкой мощности. Как вы, видели, я затрагивал уже эту тему. Снимал по этому поводу видео “Подключение и регулировка оборотов коллекторного двигателя от стиральной машины-автомат”. Это видео стало очень популярным на моём канале, зрители оставили множество разных комментариев по этой теме. Также я там выложил источник, где я взял схему регулятора оборотов с поддержкой мощности коллекторных электродвигателей. И как мне показалось на тот момент, что человек скачает себе этот файл и соберет себе такую же схему как у меня, и будет её использовать. Но нет, оказалось не все так просто как мне этого хотелось, посыпалась, куча вопросов от людей не только гуманитариев, но и совсем не плохих радиолюбителей. Были даже предложения о покупке плат регулирования оборотов. Что бы сразу ответить на многие вопросы, Вам, мои дорогие читатели, и появилась эта статья. Занимаюсь я ремонтом электроинструмента в частности перемоткой электродвигателей. И во время ремонта качественного электроинструмента замечал там «Константную электронику», которая при снижении оборотов на электроинструменте поддерживала мощность электродвигателя. Меня это очень заинтересовало, начал пробовать различные простые регуляторы оборотов, регуляторы оборотов с обратной связью по току, в общем, кучу разных штуковин. Пока не наткнулся на сайт «chipmaker.ru» где пользователь «Bogdan» выложил «схему управления коллекторным двигателем на TDA1085». Собственно говоря, вот эта ссылка: http://www.chipmaker.ru/files/file/1490/ . После того как Вы перешли, жмем на кнопку «Загрузить» В следующем окне обратно жмем «Загрузить» У нас скачивается архив, разархивировав который, видим в нем несколько файлов (два варианта схем для управления двигателями постоянного и переменного тока с монтажными платами), нам для двигателя переменного тока нужны PSD файлы с пометкой «АС» Распечатав их (принципиальная, монтажная и печатная плата), я отнес их своему очень хорошему товарищу Игорю , который мне спая регулятор оборотов с поддержкой мощности (сам я, к сожалению, не люблю работу с паяльником). Я испытал регулятор оборотов электроинструмента на TDA1085 на своей «болгарке». К счастью мой товарищ оказался хорошим радиолюбителем и нашел некоторые неточности в этих схемах и исправил их. Я не могу вам сейчас сказать что этот регулятор оборотов коллекторных электродвигателей панацея, возможно, есть что-то и лучше я не знаю. Как поведет она себя на высоких или даже средних оборотах, честно сказать я не знаю( здесь уже можно посмотреть тест этой платы в разных режимах). Эта схема отлично ведет себя на низких оборотах, и вот уже целый год отлично себя показывает на Самодельном лобзиковом станке , приводом там служит та самая «болгарка» на которой я испытывал регулятор оборотов. К клеммам «Фаза и Ноль» подключаем напряжение 220 Вольт (фазировка не влияет на работу схемы), светодиод «HL» служит нам индикатором питания платы регулятора оборотов, к клеммам « М1» подключаем наш электродвигатель, «таходатчик» который выдает постоянный ток подключаем к «Х3» а если же у вас он выдает переменный ток или импульсы, то к «Х2» (Как сделать таходатчик). К контактам «Х4» можно подключить тумблер (выключатель) который будет отключать наш двигатель, его ставить не обязательно, можно также отключать двигатель с помощью регулятора оборотов «R1» который подключается к контактам «Х1». У Bogdana на этой схеме не был указан конденсатор «С 100µF х25V» хотя он присутствует на монтажной плате (забыл указать). Также у него в схеме находится очень мощный симистор «ВТА41 800V» который подходит для управления мощными коллекторными электродвигателями, а для нас подойдет совсем другой на 10…16 Ампер (по цене будет на много дешевле). Симистор должен обязательно быть с радиатором (вся эта схема построена для управления этим симистором, который в свою очередь управляет непосредственно нашим электродвигателем). Ниже симистора на схеме указаны два мощных сопротивления «R31» и «R33» рассчитанные на 0,1 Ом и мощностью 5 Ватт каждый. Под каждые электродвигатель нужно индивидуально настраивать плату регулятора оборотов (как это сделать). Регулируется схема с помощью подстрочных сопротивлений «R3» и «R21». Построечный резистор «R3» регулирует плавность пуска двигателя, а «R21» служит для быстроты реагирования на нагрузку электродвигателя (в зависимости отнего схема будет реагировать плавно или резко на нагрузку). Для лучшего удобства я подготовил Вам список всех деталей, которые применяются в этом регуляторе оборотов с поддержкой мощности («+» обозначены полярные конденсаторы):
Резисторы | ||
20кОм | Пременное 1шт | R1 |
20кОм | Подстроечное 1шт | R3 |
1,2кОм 0,25-0,125W | 3шт | R4;5;9 |
160кОм 0,25-0,125W | 2шт | R6;8 |
24 Ом 0,25-0,125W | 1шт | R7 |
1м 0,25-0,125W | 1шт | R10 |
120кОм 0,25-0,125W | 1шт | R11 |
47кОм 0,25-0,125W | 1шт | R12 |
470кОм 0,25-0,125W | 1шт | R13 |
220кОм 0,25-0,125W | 1шт | R14 |
51 Ом 0,25-0,125W | 4шт | R15;19;25;30 |
2,2кОм 0,25-0,125W | 2шт | R16;22 |
68кОм 0,25-0,125W | 1шт | R17 |
820 Ом 0,25-0,125W | 1шт | R18 |
2,7кОм 0,25-0,125W | 1шт | R20 |
10кОм | Подстроечное 1шт | R21 |
390кОм 0,25-0,125W | 4шт | R23;24;28;29 |
470 Ом 2W | 1шт | R26 |
270 Ом 2W | 1шт | R27 |
160кОм 2W | 1шт | 32 |
0,1 Ом 5W | 2шт | R31;33 |
100 Ом 5W | 1шт | R34 |
51 Ом 2W | 1шт | 35 |
Конденсаторы | ||
+100µF х25V | 3шт | С1;5;неуказанный |
100n | 3шт | C2;8;9 |
+1µF х16V | 3шт | С3;4;7 |
820р | 1шт | С6 |
+47µF х16V | 1шт | С10 |
47n | 1шт | С11 |
+1000µF х35V | 1шт | С12 |
+100µF х35V | 1шт | С13 |
1µF х600V | 1шт | С14 |
100n х600V | 1шт | С15 |
TDA 1085 | 1шт Микросхема | МС1 |
ВТА41 800V (не обязат) | 1шт Семистор | Т1 |
1N4742 | 1шт стабилитрон | VS1 |
1N5359 | 1шт стабилитрон | VS2 |
FR301 | 1шт диод | VD1 |
20A | 1шт предохранитель | FU1 |
На 3В | 1шт светодиод | HL1 |
Изначально автор Bogdan на монтажной плате регулятора оборотов не указал буквенные обозначения всех деталей, но благодаря моему товарищу (огромное ему спасибо) он расставил все обозначения и исправил все неточности которые были у Bogdanа ВНИМАНИЕ!!! В расположении деталей ОШИБКА! Сопротивление R21 обозначено как R27. Будьте внимательны! Вот так выглядит моя плата регулятора оборотов с поддержкой мощности: https://drive.google.com/file/d/0B6x0JsiBUva0d3pUMzNXU0gtTjA/view?usp=sharing Ссылки для скачивания: Схема регулятора: http://www.chipmaker.ru/files/file/1490/ список деталей: https://drive.google.com/file/d/0B6x0JsiBUva0UmlaNV9nSEZGeTA/view?usp=sharing расположение деталей: https://drive.google.com/file/d/0B6x0JsiBUva0R05OYkhKazZCczA/view?usp=sharing ОЧЕНЬ интересные видео по теме!!! Агрессивные тесты. Ссылка на немецкий вариант схемы: http://zisoft.de/elektronik/drehzahlregelung.html Добавлено Анатолием: Я думаю Александр не обидится если я в его теме выскажу несколько своих соображений. Собрал уже не одну плату и могу сказать со сто процентной уверенностью. Если у кого то что то не работает, то проверяйте качество изготовления платы, качество и правильность монтажа, исправность элементов и двигателя. Все причины не работы (некорректной работы) кроются только в этом. Печатки и схемы выложенные в нете рабочие. Сам недавно столкнулся с подобным, две разные платы, а проявление неисправности одно и тоже. При включении и добавлении оборотов двигатель раскручивается рывками было ощущение как будто семистор работает на одном полупериоде. Оказалось на одной плате при травлении исчезла дорожка к конденсатору С10 на 47,0х16V, во втором случае этот же конденсатор был высохший. Попутно убедился, что если уменьшить С11 идущий на 14 ногу микросхемы до 22Н, то двигатель стартует, набирает максимальные обороты и обороты не регулируются. Поэтому с ним тоже нельзя ошибаться 47Н и точка. Теперь по поводу замеров напряжения. Я собираю платы с отдельным блоком питания, поэтому промеры даю для этого случая. Исходные условия, к плате подключен двигатель с таходатчиком, регулятор оборотов в нулевом положении (минимум до конца), блок питания в розетку включён, 220В на плату не подаётся. 1-0,17В 2-0,17В 3-2,63В 4-0 5-0 6-2,4В 7-0,05В 8-0 9-14,65В 10-13,7В 11-12,83В 12-0,55В 13-0 14-11,34В 15-0,03В 16-0,03В Условия те-же, но подключено 220В и регулятор стоит на небольших оборотах. Двигатель медленно вращается. 1-0,25В 2-0,3В 3-2,62В 4-0,55В 5-0,55В 6-2,4В 7-1,14В 8-0 9-14,2В 10-14,2В 11- не измеряется. 12-0,74В 13-0,69В 14-4,8В при касании щупом двигатель ускоряется. 15-0,73В 16-0,58В Отличия могут быть но не очень большие. Напряжение на ноге 3 устанавливается регулятором R21. Кроме этого советовал бы увеличить резистор R9 вместо 1,2 кОм ставить 20кОм. Этим уменьшается напряжение с таходатчика. И R17 вместо 68кОм ставить 27кОм. Ну и диод для защиты микросхемы само собой. Пару слов по немецкой схеме. При правильной сборке, правильно выполненной печатке и исправных деталях всё работает без вопросов. Рекомендовал бы такую последовательность действий. Собрали плату, проверили сборку, микросхему не ставим. В панельку микросхемы подключаем на ноги 8-9 резистор 1,6кОм 1Вт, подключаем питание 220В, двигатель и таходатчик не подключен (это не принципиально), и меряем напряжение на подключённом резисторе. Должно быть 15-17В. Ставим микросхему, подключаем мотор и таходатчик и наслаждаемся работой. В немецкую схему советую внести следующее изменение. На регуляторе частоты вращения, на центральном отводе, запаять резистор 1,2кОм и второй конец этого резистора на клемму Х2-2, по семе. Боковую ногу регулятора которая раньше шла на центральный отвод, подключаем на корпус. Что это даёт. Раньше, при выведенном в ноль регуляторе, двигатель продолжал вращаться, теперь стоит как ему и положено. А методика настройки простая. Регулятор на ноль, включили, добавили немного оборотов, крутим Р1 пока обороты не станут красивыми на слух и визуально, обороты на максимум, крутим ограничение максимальных оборотов Р3, наслаждаемся своим мастерством.
Изготавливая различные самоделки, приходится сталкиваться с рядом проблем и поиском их решений. Так и в случае с различными приспособлениями, которые имеют в своей конструкции коллекторный электродвигатель.
Очень часто нужно сделать так, чтобы двигатель имел регулируемые обороты. Для этих целей используется регулятор (контроллер) оборотов двигателя, который можно собрать своими руками.
Представленный ниже регулятор для электродвигателей позволяет не только обеспечить плавный пуск мотора и степень регулировки оборотов, но и защитить двигатель от перегрузок. Работать контроллер может не только от 220 Вольт, но и от пониженного напряжения, вплоть от 110 Вольт.
Характеристики самодельного контроллера
- Диапазон напряжений (110-240 Вольт);
- Возможность регулировки оборотов электродвигателя, от 9-99%;
- Нагрузка, до 2,5 кВт;
- Рабочая мощность, не более 300 Вт.
Самодельный регулятор оборотов для электродвигателя имеет низкий уровень шума, он позволяет осуществлять плавную стабилизацию оборотов и осуществлять мягкий пуск электродвигателя.
Ниже будет представлена схема регулятора оборотов для электродвигателя и принцип его работы.
Схема регулятора оборотов для электродвигателя
Чтобы собрать регулятор оборотов для двигателя потребуется генератор ШИМ импульсов и симистор для управления двигателем. Диод и резистор D1 и R1, позволяют снижать напряжение для питания двигателя, а конденсатор C1, призван обеспечивать фильтрацию тока на входе электроцепи.
Элементы P1, R5 и R3 — это делители напряжения с возможностью регулировки его значений. Резистор R2, который указан на схеме регулятора оборотов электродвигателя, позволяет синхронизировать внутренние блоки регулятора с основным симистором (ВТ139), на котором собственно и работает регулятор оборотов.
Ниже на рисунке можно увидеть наглядное расположение всех элементов регулятора оборотов для электродвигателей. Обязательно следует безопасно расположить элементы, так как работа регулятора осуществляется от опасного напряжения в 220 Вольт.
Мощность и нагрузка регулятора оборотов
К самодельному регулятору оборотов двигателя, сделанному по выше представленной схеме, можно подключить нагрузку не более 2 кВт. В случае увеличения нагрузки осуществляется замена главного симистора BT138/800. Если симистор устанавливается большего номинала, то его рекомендуется вынести за пределы общей платы, и обязательно установить на радиатор охлаждения, который можно сделать из куска алюминиевой полосы.
Примечательно то, что подобный регулятор можно использовать не только с электродвигателями, но и с лампами освещения. Таким образом, дёшево и сердито, можно собрать регулятор для яркости ламп освещения.
Подписывайтесь на мой канал в Дзен. Всем удачи, и мирного неба над головой!
Типы регулировки
Существует довольно много вариантов регулировки оборотов. Вот основные из них:
- Блок питания с регулировкой выходного напряжения.
- Заводские устройства регулировки, которые идут изначально с электромотором.
- Регуляторы на кнопочном управлении и стандартные регуляторы, которые просто ограничивают напряжение.
Эти типы регулировки плохи тем, что с уменьшением или увеличением напряжения падает и мощность. В некоторых электроинструментах это допустимо, но, как показывает практика, в большинстве случаев это является неприемлемым из-за сильного падения мощности и, соответственно, КПД.
Наиболее приемлемым вариантом будет регулятор на основе симистора или тиристора. Мало того что такой регулятор не уменьшает мощность при уменьшении напряжения, он еще и позволяет осуществлять более плавный пуск и регулировку оборотов. К тому же такую схему можно сделать своими руками. Ниже изображен регулятор оборотов с поддержанием мощности. Схема собрана на базе симистора BTA 41 800 В.
Именно столько ножей должно быть у хозяйки на кухне, чтобы процесс приготовления пищи всегда был простым и приятным.
Где: а) схема подключения машины, б) векторные диаграммы при использовании различных сопротивлений.
Наилучшими условиями для пуска будет включения конденсатора в пусковую обмотку. Но поскольку емкость конденсатора довольно велика, соответственно и его стоимость и габариты тоже возрастают. Зачастую его применяют для получения повышенного момента для пуска. Пуск с помощью индуктивности имеет наихудшие показатели и в настоящее время не используется. Довольно часто могут применять запуск с помощью активного сопротивления, при этом пусковую обмотку делают с повышенным активным сопротивлением. После запуска электродвигателя пусковая обмотка отключается. Ниже показаны схемы включений и их пусковые характеристики:
Где: а,б) двигатели с пусковой обмоткой, в,г) конденсаторные
Конденсаторный двигатель
Данный тип электродвигателя имеет две рабочие обмотки, в одну из которых подключают рабочую емкость Ср. Данные обмотки сдвинуты относительно друг друга на 90 0 электрических и имеют фазные зоны тоже 90 0 . При этом мощности обеих обмоток равны, но их токи и напряжения различны, также различны количества витков. Иногда величины конденсатора рабочего не достаточно для формирования нужного пускового момента, поэтому параллельно ему могут вешать пусковой, как это показано на рисунке выше. Схема приведена ниже:
Где: а) схема конденсаторного электродвигателя, б) его векторная диаграмма
В данном типе однофазных машин коэффициент мощности cosφ даже выше чем у трехфазных. Это объясняется наличием конденсатора. КПД такого электродвигателя выше, чем однофазного электродвигателя с пусковой обмоткой.
Изменение скорости АД с короткозамкнутым ротором
Существует несколько способов:
- Управление вращением за счет изменения электромагнитного поля статора: частотное регулирование и изменение числа пар полюсов.
- Изменение скольжения электромотора за счет уменьшения или увеличения напряжения (может применяться для АД с фазным ротором).
Частотное регулирование
В данном случае регулировка производится с помощью подключенного к двигателю устройства для преобразования частоты. Для этого применяются мощные тиристорные преобразователи. Процесс частотного регулирования можно рассмотреть на примере формулы ЭДС трансформатора:
Данное выражение означает, что для сохранения постоянного магнитного потока, означающего сохранение перегрузочной способности электромотора, следует одновременно с преобразованием частоты корректировать и уровень питающего напряжения. Если сохраняется выражение, вычисленное по формуле:
то это означает, что критический момент не изменен. А механические характеристики соответствуют рисунку ниже, если вы не понимаете, что значат эти характеристики, то в этом случае регулировка происходит без потери мощности и момента.
Достоинствами данного метода являются:
- плавное регулирование;
- изменение скорости вращения ротора в большую и меньшую сторону;
- жесткие механические характеристики;
- экономичность.
Недостаток один — необходимость в частотном преобразователе, т.е. увеличение стоимости механизма. К слову, на современном рынке представлены модели с однофазным и трёхфазным входом, стоимость которых при мощности 2-3 кВт лежит в диапазоне 100-150 долларов, что не слишком дорого для полноценной регулировки привода станков в частной мастерской.
Переключение числа пар полюсов
Данный метод применяется для многоскоростных двигателей со сложной обмоткой, позволяющей изменять число пар ее полюсов. Самое широкое применение получили двухскоростные, трехскоростные и четырехскоростные АД. Принцип регулировки проще всего рассмотреть на основе двухскоростного АД. В такой машине обмотка каждой фазы состоит из двух полуобмоток. Скорость вращения изменяется при подключении их последовательно или параллельно.
В четырехскоростном электродвигателе обмотка выполнена в виде двух независимых друг от друга частей. При изменении числа пар полюсов первой обмотки производится изменение скорости работы электромотора с 3000 до 1500 оборотов в минуту. При помощи второй обмотки производится регулировка вращения 1000 и 500 оборотов в минуту.
При изменении числа пар полюсов происходит и изменение критического момента. Для его сохранения неизменным, требуется одновременно с изменением числа пар полюсов регулировать и питающее напряжение, например, переключением схемы звезда-треугольник и их вариациями.
Достоинства данного метода:
- жесткие механические характеристики двигателя;
- высокий КПД.
- ступенчатая регулировка;
- большой вес и габаритные размеры;
- высокая стоимость электромотора.
Особенности конструкции
Микросхема оснащена всем необходимым для осуществления качественного управления двигателем в различных скоростных режимах, начиная от торможения, заканчивая разгоном и вращением с максимальной скоростью. Поэтому ее использование намного упрощает конструкцию, одновременно делая весь привод универсальным, так как можно выбирать любые обороты с неизменным моментом на валу и использовать не только в качестве привода конвейерной ленты или сверлильного станка, но и для перемещения стола.
Характеристики микросхемы можно найти на официальном сайте. Мы укажем основные особенности, которые потребуются для конструирования преобразователя. К ним можно отнести: интегрированную схему преобразования частоты в напряжение, генератор разгона, устройство плавного пуска, блок обработки сигналов Тахо, модуль ограничения тока и прочее. Как видите, схема оснащена рядом защит, которые обеспечат стабильность функционирования регулятора в разных режимах.
На рисунке ниже изображена типовая схема включения микросхемы.
Схема несложная, поэтому вполне воспроизводима своими руками. Есть некоторые особенности, к которым относятся предельные значения и способ регулирования скоростью:
- Максимальный ток в обмотках двигателя не должен превышать 10 А (при условии той комплектации, которая представлена на схеме). Если применить симистор с большим прямым током, то мощность может быть выше. Учтите, что потребуется изменить сопротивление в цепи обратной связи в меньшую сторону, а также индуктивность шунта.
- Максимальная скорость вращения достигается 3200 об/мин. Эта характеристика зависит от типа двигателя. Схема может управлять моторами до 16 тыс. об/мин.
- Время разгона до максимальной скорости достигает 1 секунды.
- Нормальный разгон обеспечивается за 10 секунд от 800 до 1300 об/мин.
- На двигателе использован 8-полюсный тахогенератор с максимальным выходным напряжением на 6000 об/мин 30 В. То есть он должен выдавать 8мВ на 1 об/мин. При 15000 об/мин на нем должно быть напряжение 12 В.
- Для управления двигателем используется симистор на 15А и предельным напряжением 600 В.
Если потребуется организовать реверс двигателя, то для этого придется дополнить схему пускателем, который будет переключать направление обмотки возбуждения. Также потребуется схема контроля нулевых оборотов, чтобы давать разрешение на реверс. На рисунке не указано.
Изготовление своими руками
Если нет возможности, а также желания приобретать регулятор заводского типа, то можно собрать его своими руками. Хотя регуляторы типа » tda1085 » зарекомендовали себя очень хорошо. Для этого нужно детально ознакомиться с теорией и приступить к практике. Очень популярны схемы симисторного исполнения, в частности регулятор оборотов асинхронного двигателя 220в (схема 5). Сделать его несложно. Он собирается на симисторе ВТ138, хорошо подходящем для этих целей.
Схема 5 — Простой регулятор оборотов на симисторе.
Этот регулятор может быть использован и для регулировки оборотов двигателя постоянного тока 12 вольт, так как является довольно простым и универсальным. Обороты регулируются благодаря изменению параметров Р1, определяющему фазу входящего сигнала, который открывает переход симистора.
Принцип работы прост. При запуске двигателя происходит его затормаживание, индуктивность изменятся в меньшую сторону и способствует увеличению U в цепи «R2—>P1—>C2». При разряде С2 симистор открывается в течение некоторого времени.
Существует еще одна схема. Она работает немного по-другому: путем обеспечения хода энергии обратного типа, которое является оптимально выгодным. В схему включен довольно мощный тиристор.
Схема 6 — Устройство тиристорного регулятора.
Схема состоит из генератора сигнала управления, усилителя, тиристора и участка цепи, выполняющего функции стабилизатора вращения ротора.
Наиболее универсальной схемой является регулятор на симисторе и динисторе (схема 7). Он способен плавно убавить скорость вращения вала, задать реверс двигателю (изменить направление вращения) и понизить пусковой ток.
Принцип работы схемы:
- С1 заряжается до U пробоя динистора D1 через R2.
- D1 при пробитии открывает переход симистора D2, который отвечает за управление нагрузкой.
Напряжение при нагрузке прямо пропорционально зависит от частотной составляющей при открытии D2, зависящего от R2. Схема применяется в пылесосах. Она содержит универсальное электронное управление, а также способность простого подключения питания 380 В. Все детали следует расположить на печатной плате, изготовленной по лазерно-утюжной технологии (ЛУТ). Подробно с этой технологии изготовления плат можно ознакомиться в интернете.
Таким образом, при выборе регулятора оборотов электродвигателя возможна покупка заводского или изготовление своими руками. Самодельный регулятор сделать достаточно просто, так как при понимании принципа действия устройства можно с легкостью собрать его. Кроме того, следует соблюдать правила безопасности при осуществлении монтажа деталей и при работе с электричеством.
Плавная работа двигателя, без рывков и скачков мощности – это залог его долговечности. Для контроля этих показателей используется регулятор оборотов электродвигателя на 220В, 12 В и 24 В, все эти частотники можно изготовить своими руками или купить уже готовый агрегат.
Принцип работы регулятора оборотов
Регулятор оборотов представляет собой устройство, состоящее из следующих трех основных подсистем:
- Двигателя переменного тока;
- Главного контроллера привода;
- Привода и дополнительных деталей.
Когда двигатель переменного тока запускается на полную мощность, происходит передача тока с полной мощностью нагрузки, такое повторяется 7-8 раз. Этот ток сгибает обмотки двигателя и вырабатывает тепло, которое будет выделяться продолжительное время. Это может значительно снизить долговечность двигателя. Иными словами, преобразователь – это своеобразный ступенчатый инвертор, который обеспечивает двойное преобразование энергии.
Фото – схема регулятора для коллекторного двигателя
В зависимости от входящего напряжения, частотный регулятор числа оборотов трехфазного или однофазного электродвигателя, происходит выпрямление тока 220 или 380 вольт. Это действие осуществляется при помощи выпрямляющего диода, который расположен на входе энергии. Далее ток проходит фильтрацию при помощи конденсаторов. Далее формируется ШИМ, за это отвечает электросхема. Теперь обмотки асинхронного электродвигателя готовы к передаче импульсного сигнала и их интеграции к нужной синусоиде. Даже у микроэлектродвигателя эти сигналы выдаются, в прямом смысле слова, пачками.
Как выбрать регулятор
Существует несколько характеристик, по которым нужно выбирать регулятор оборотов для автомобиля, станочного электродвигателя, бытовых нужд:
- Тип управления. Для коллекторного электродвигателя бывают регуляторы с векторной или скалярной системой управления. Первые чаще применяются, но вторые считаются более надежными;
- Мощность. Это один из самых важных факторов для выбора электрического преобразователя частот. Нужно подбирать частотник с мощностью, которая соответствует максимально допустимой на предохраняемом приборе. Но для низковольтного двигатель лучше подобрать регулятор мощнее, чем допустимая величина Ватт;
- Напряжение. Естественно, здесь все индивидуально, но по возможности нужно купить регулятор оборотов для электродвигателя, у которого принципиальная схема имеет широкий диапазон допустимых напряжений;
- Диапазон частот. Преобразование частоты – это основная задача данного прибора, поэтому старайтесь выбрать модель, которая будет максимально соответствовать Вашим потребностям. Скажем, для ручного фрезера будет достаточно 1000 Герц;
- По прочим характеристикам. Это срок гарантии, количество входов, размер (для настольных станков и ручных инструментов есть специальная приставка).
Хорошо себя зарекомендовали приборы марки Sinus, E-Sky и Pic.
При этом также нужно понимать, что есть так называемый универсальный регулятор вращения. Это частотный преобразователь для бесколлекторных двигателей.
Фото – схема регулятора для бесколлекторных двигателей
В данной схеме есть две части – одна логическая, где на микросхеме расположен микроконтроллер, а вторая – силовая. В основном такая электрическая схема используется для мощного электрического двигателя.
Видео: регулятор оборотов электродвигателя с ШИро V2
Большинство мировых производителей профессиональных угловых шлифовальных машинок (болгарок) таких как Bosch, Metabo, Makita, DeWalt и других используют два типа регуляторов оборотов с обратной связью.
С помощью таходатчика
На конце якоря мотора установлен кольцевой магнит с прорезью или срезом, а на плате регулятора установлена катушка индуктивности или датчик Холла. Такой регулятор обеспечивает максимально точную стабилизацию оборотов двигателя при изменении нагрузки.
На основе измерения падения напряжения на электродвигателе
В этом случае измеряется падение напряжения на двигателе, и схема управления изменяет длительность открытия силового ключа. Такой регулятор, если он правильно настроен, обеспечивает также хорошую стабилизацию оборотов двигателя при изменении нагрузки.
Все промышленные регуляторы, собранные на микроконтроллерах, полностью залитые эпоксидной смолой и в итоге они не пригодны для ремонта, а цена за новый регулятор достаточно большая, и составляет примерно 20-30% от стоимости самого электроинструмента.
В поиске специализированных микросхем для решения данной задачи мне приглянулись регуляторы Phase Control фирмы Atmel. Например, простой вариант регулятора на микросхеме U2008B. Рассмотрим схему регулятора на ИМС U2008B приведенную на рис.1. В данном регуляторе можно использовать обратную связь по току или режим плавного пуска, однако в нём нет защиты от перегрузки. Если использовать плавный пуск тогда нужны только элементы С1, R4 и перемычку Х1 не ставим, а если нужна обратную связь — тогда все наоборот.
Рис. 1
Так как ИMC U2008B не может одновременно работать в режиме плавного пуска и обратной связи, она не подходит для нашей задачи. На рис.2 показана схема регулятора на микросхеме U2010B, у которой есть обратная связь по току, защита от перегрузки и плавный старт одновременно. Светодиод D2 индицирует перегрузку электродвигателя. Переключатель SA1 «Mode» обеспечивает возможность выбора действий при перегрузке на двигателе в трех режимах: Положение А — индикация перегрузки и последующий сброс на минимальные обороты. Для восстановления рабочих оборотов, необходимо выключить инструмент.
Рис. 2
Положение В — индикация перегрузки, последующий сброс на минимальные обороты, после снятие нагрузки с инструмента, восстанавливаются установленные обороты, т.е. происходит авто старт.
Положение С — только индикация перегрузки, без остановки двигателя и защиты.
Подбором ёмкости конденсатора СЗ от 1 до 10 мкФ можно изменять длительность и плавность пуска двигателя.
Настройка регулятора.
В техническом описании к ИМС U2010B в схеме подключения обозначено только падение напряжение на R6 в 250 мВ и не указано, каким именно должен быть этот резистор.
Рассчитать сопротивление R6 можно исходя из мощности двигателя по формуле:
R6 = UR6/(Рдвиг/Uпит),
где: UR6 — напряжение на R6 (250 мВ), Рдвиг — мощность двигателя, UПИТ — напряжение питания сети.
Например, для двигателя мощностью 750 Вт рассчитываем: R6= 0,25/(750/220) = 0,07 Ом.
Номиналы резисторов R6 и R11, в зависимости от мощности электродвигателя, приведены в таблице.
R11 Мощность, Вт | R6*, Ом | Нихром, D 1 мм | Нихром, D 0,8 мм | R11*, кОм |
250 | 0,22 | 30 | 19 | 180-270 |
300 | 0,18 | 27 | 17 | 180-220 |
550 | 0,1 | 25 | 16 | 180 |
700 | 0,08 | 20 | 14 | 160 |
850 | 0,07 | 17 | 11 | 150 |
1000 | 0,055 | 15 | 10 | 100-120 |
1200 | 0,047 | 13 | 9 | 90-110 |
1500 | 0,04 | 12 | 8 | 80-100 |
1800 | 0,03 | 10 | 7 | 70-100 |
2000 | 0,028 | 8 | 6 | 65-90 |
2200 | 0,025 | 7 | 5 | 65-90 |
Главное правильно подбирать резистор R6 под мощность двигателя. Выше представленная формула правильная, но на практике может потребоваться некоторая коррекция по поведению двигателя под нагрузкой. Если резистор великоват, то двигатель довольно резко стартует (т.е. происходит большая компенсация нагрузки, чем надо), а потом отключается, а если резистор будет мал, то не будет обеспечиваться компенсация нагрузки.
В Datasheet к ИМС U2010B ёмкость конденсатора С2 указана 0,01 мкФ, но она рассчитана на 60-герцовую сеть, и при использования ИМС в сети 50 Гц за период выдавалось несколько импульсов управления. В итоге, обороты электродвигателя практически не регулировались и двигатель работал на полную мощность. Для сети с частотой 50 Гц нужно ёмкость конденсатора С2 увеличить до 0,015 мкФ.
Первый пуск
Переменный резистор Р1 (регулятор оборотов) нужно установить на минимальные обороты двигателя, по схеме движок потенциометра должен быть повернут в сторону резистора R13. Затем подстроенный резистор R10 (компенсация нагрузки) установить в среднее положение, а на место R11 (перегрузка) временно подпаять постоянный резистор сопротивлением 62 кОм. Потом включить регулятор в сеть 220 В / 50 Гц и подстроенным резистором R8 выставить самые минимальные обороты двигателя.
Нужно сделать так, чтобы при включении двигатель начинал вращаться на минимальных оборотах. Если настроить устройство так, чтобы совсем не было напряжения на электродвигателе, то тогда становится слишком нелинейная зависимость управления резистором Р1 — при его повороте сначала двигатель не крутится, а потом резко стартует без плавного пуска.
Далее нужно подключить вольтметр с диапазоном измерения 300 В к выводам двигателя, включить двигатель и на средних оборотах, зажимая вал или привод двигателя через тряпку рукой, выставить такое положение резистора R10, чтобы обороты электродвигателя не менялись при изменении нагрузки на его валу. Одновременно с этим нужно смотреть на вольтметр, подключенный к двигателю. При увеличении нагрузки на валу электродвигателя регулятор прибавляет напряжение, и двигатель крутится с одинаковыми оборотами, независимо от нагрузки.
И вот в последнюю очередь настраивается резистор R11 (перегрузка). Постоянный резистор номиналом 62 кОм выпаиваем и вместо него ставим подстроенный или переменный резистор номиналом 220 кОм. На оборотах двигателя чуть больше минимальных, сильно зажимая вал или привод двигателя, стараемся почти заклинить вал двигателя, и по степенно изменяем величину резистора R11, пока не начнет срабатывать защита, и не станет светиться VD2. Затем измерьте сопротивление переменного резистора тестером и запаяйте в устройство соответствующий резистор. В таблице указано приблизительные значения сопротивления R11,
Детали регулятора
Купить микросхемы U2008B, U2010B можно через сайт AliExpress (www.ru.aliexpress.com) в Китае с бесплатной доставкой на Украину, а далее посылка бесплатно отправляется через «Укрпочту» в любое почтовое отделение на территории Украины. Доставка на Украину производится на протяжении 25-40 дней. Например, цена 1 шт. микросхемы U2010B зависит от корпуса исполнения, примерно 0,9 USD в корпусе S016 и 1,2 USD в корпусе DIP16, а симистора ВТА24-800 — 0,4 USD.
Печатная плата устройства изготовлена из одностороннего фольгированного стеклотекстолита толщиной 1 мм.
Симистор VS1 лучше использовать с изолированной площадкой под радиатор серии ВТА, например BTA12-800, BTA16-800, BTA24-800, или применить другие. При мощности двигателя до 400 Вт, VS1 можно не устанавливать на радиатор. Все SMD детали типоразмера 1206, их можно запаять обычным паяльником с тонким жалом.
Подстроенные резисторы — типа СП3-19а или другой малогабаритный. Переменный резистор Р1 любой на 47-50 кОм, можно малогабаритные СП4-1, СП3-9. Резистор R1 мощностью не менее 2 Вт, например, типа MЛT-2 или др. Резистор R6 изготовлен из нихромовой проволоки диаметром 0,7 — 1 мм. Автор использовал нихромовый провод из старого блока сопротивлений для зажигания автомобилей ГАЗ с маркировкой 1402.3729. Все электролитические конденсаторы на напряжение не менее 50 В. Диод D1 — типа 1N4007 или КД208, также можно использовать диод в SMD исполнении. Светодиод D2 любой малогабаритний диаметром 3-5 мм красного света. Переключатель SA1 любой малогабаритный 3-х позиционный. Если нужен только один режим перегрузки, тогда вместо него можно установить перемычку.
Литература:
- Бирюков С. Автомат плавного пуска коллекторных электродвигателей. // Радио. — 1997. — №7. — С.40-42.
Печатная плата для схемы показанной на рисунке 2:
[hidepost]Скачать[/hidepost]
Автор: Валентин Шипляк, г. Ужгород
ли со статьей или есть что добавить?