Выбор микроскопа для школьных и внеклассных занятий

Микроскоп для ребенка – окно в абсолютно неведомый ранее мир клеток, крохотных частиц и микроорганизмов. Кому из детей не интересно узнать, например, как выглядят вблизи крылышки и лапки насекомого? С этой точки зрения данный прибор можно отнести к развивающим игрушкам.

Прежде чем решиться на покупку микроскопа, родителям следует проанализировать ситуацию: возраст ребенка, степень его заинтересованности в новой игрушке, склонность к “исследованиям”, усидчивость и т. д. “Серьезность” приобретаемой модели (соответственно, и цена) зависит от суммы всех этих факторов.

Для первого знакомства с “наномиром” ребенку годится детский микроскоп с минимальным набором опций. Если же речь идет о школьнике, то лучше остановиться на т. н. учебном с увеличением не менее 650 крат.

Отправляемся в магазин

Как выбрать качественный микроскоп для школьника? Те, что продаются в магазинах игрушек, даже относительно дорогие, настоящей техникой не являются, как ни жаль. А о дешевых и говорить не приходится. Картинка, которую способен разглядеть ребенок с такой игрушкой, вряд ли вдохновит его на долгие “исследования”, и интерес будет вскоре утрачен.

Тогда как выбрать микроскоп для школьника? Хорошие приборы, конечно же, существуют. Но цена их – на порядок выше, чем у игровых. Хотя ряд недорогих по стоимости вполне можно сравнить с наиболее “навороченными” из игрушечных. Относится это к моделям, именуемым школьными и профессиональными.

С какой целью приобретается микроскоп для школьника?

Если лишь как игрушку, лучше приобретите лупу хорошего качества. Покупкой его следует озадачиться лишь тогда, когда опыты с микроскопом для школьников не перестанут быть интересными через пару дней, а ребёнок “на полном серьезе” и достаточно давно увлечен естественными науками, такими как химия и биология. А также подумывает о профессии врача или биолога, планирует по данным предметам сдачу ЕГЭ или ОГЭ. В этом случае иметь дома высококачественный школьный микроскоп – реальная необходимость, и немалые затраты на приобретение его со всеми сопутствующими принадлежностями окажутся оправданными.

Как быть, когда ребёнок увлечен биологией, а родители совершенно не разбираются в ней? И если даже не знают, как выглядит микроскоп, как не прогадать с покупкой? Придется всерьез заняться изучением ассортимента магазинов оптики, читать соответствующие форумы, спрашивать у тех, кто “в теме”, и в конце концов составить собственное мнение. К тому же определитесь заранее с суммой, которую вы сможете себе позволить потратить на покупку, и, исходя из нее, выбирайте самую оптимальную модель.

Итак, на что же нужно обратить основное внимание, покупая микроскоп для школьника?

Что такое увеличение?

Эта функция может быть оптической и цифровой. Обращать внимание следует в первую очередь на оптическое увеличение. Цифровое – это обычное зуммирование, то есть приближение картинки, без возможности разглядеть дополнительные детали. Тем, кто настроен на серьезную работу, следует ориентироваться на модели с увеличением, начиная с 1000-кратного и больше. Можно найти в продаже и доступные по цене экземпляры для домашнего использования с 2000-кратным оптическим увеличением.

Очень полезная функция – возможность регулировки диоптрий для страдающих плохим зрением. Обычно их можно настроить в пределах от +5 до -5. Согласитесь, работа с микроскопом без очков куда удобнее, чем заглядывание в окуляр через них.

Настройка грубая и тонкая

В более простых моделях предусмотрена, как правило, лишь грубая настройка. У вариантов “посерьезнее” дополнительно есть функция тонкой настройки. Зачастую потребители не в силах уловить разницу между двумя экземплярами с похожим описанием, но значительной разницей в цене (к примеру, за 12-13 и за 30 тысяч рублей), и недоумевают, мол, за что тут переплачивать? Ведь это всего лишь микроскоп для школьника!

Поясняем: разница может быть в качестве оптики. Или же та окажется монокулярной и не предусматривающей функцию настройки диоптрий. Оптика – именно та часть микроскопа, экономить на которой следует в последнюю очередь. В этом смысле стоит выбирать модель максимально дорогую из тех, что вы можете себе позволить.

Микроскоп может быть моно- или бинокулярным. В первом случае в него смотрят одним глазом, во втором – двумя, что, несомненно, удобнее. И хотя для многих этот момент не принципиален, его все же следует учитывать. Смотреть в бинокуляр как минимум легче на протяжении длительного времени – глаза меньше устают.

Что такое световой микроскоп? Немного о подсветке

Говоря об этом приборе, нельзя не упомянуть систему подсветки. Согласно определению, микроскоп является оптическим прибором с увеличением не менее чем двухступенчатым, позволяющим увидеть не различимые обычным глазом предметы и детали с расстояния 250 мм. Световой микроскоп, таким образом, немыслим без дополнительного источника освещения.

Возможны два варианта – LED-подсветка или галогенового типа. Какая же из них лучше?

LED-подсветка представлена встроенным светодиодом, дающим белый свет. Срок его службы больше, и нагревается он по минимуму. Галогены греются немного больше и свет имеют желтоватого оттенка. Варианты с LED-подсветкой обычно стоят немного дороже, но разница эта не принципиальна. Многие модели микроскопов могут существовать либо с одним, либо с другим видом подсветки – выбор за покупателем.

Камера для вывода изображения

Хороший школьный микроскоп должен быть оборудован камерой, при помощи которой изображение выводится на экран монитора. Эта функция весьма полезна. Она дает возможность сфотографировать или заснять на видео результаты своих опытов и проиллюстрировать снимками доклад или другую работу. Разглядывать образец на экране куда удобнее, чем через окуляр, к тому же делать это можно коллективно.

Отдельные модели (какие именно – требуется уточнять у продавцов-консультантов) позволяют в режиме реального времени производить вывод на компьютерный экран наблюдаемой картинки. Для этого микроскоп должен быть вместо окуляра оборудован специальным видеоокуляром, который крепится в тубус визуальной насадки.

Камеру можно купить и отдельно с последующей установкой на аппарат. Причем наличие ее никак не мешает обычному наблюдению через окуляры. Правда, покупка ее потребует дополнительного расхода порядка 8-10 тысяч руб. или даже больше. Такие камеры располагают возможностью как фото-, так и видеосъемки. Если вы решили, что такая опция вам необходима, лучше выбрать для покупки тринокулярный микроскоп.

Возможность выбирать поле

Наблюдения можно вести как в темном, так и в светлом поле. Это, скорее всего, потребует наличия специальных объективов. На практике темное поле в домашних условиях используется редко – это ведь не специальная лаборатория.

Как выбрать микроскоп для школьника, если вы настроены на серьезную покупку? Какие модели посоветовать родителям? Оптимальным соотношением цены и качества, на наш взгляд, обладают микроскопы “Альтами БИО 6” (трино) стоимостью от 32 000 до 35 000 рублей или “Альтами БИО 7” (трино) – примерно за 38 000. В том же ценовом сегменте Levenhuk D320L (чуть дороже за счет встроенной камеры) или биомикроскопы Levenhuk 670T по цене около 40 тысяч рублей, а также Levenhuk 740T. Это вполне достойные тринокулярные модели с хорошей оптикой. Дополнительное приобретение камеры, как уже говорилось, увеличивает бюджет покупки еще на сумму порядка 10 тысяч.

Если хотите уложиться в сумму чуть меньше (например, в пределах 30 000 руб.), выбирайте “Альтами БИО 4” – хоть он и бинокулярный и обладает увеличением всего лишь до 1000 крат, зато продается сразу с камерой.

Максимально же недорогие школьные микроскопы “Альтами” продаются по цене 6-8 тысяч рублей и обладают увеличением порядка 800 крат, что тоже совсем неплохо, особенно если бюджет ваш ограничен.

В комплектах с такими моделями, как, например, “Альтами БИО 6” идут, как правило, наборы светофильтров диаметром 32 мм (желтого, голубого, зеленого цвета), чехол для защиты от пыли, иммерсионное масло в специальном флаконе-капельнице. Наличие руководства по эксплуатации подразумевается само собой. Все остальное придется докупать отдельно.

Что именно докупить?

Вам потребуется набор для подготовки микропрепаратов. Имеются в виду образцы тканей и т. п., которые планируется рассматривать. Готовые образцы также продаются, бывают самых различных тематик. Стоит покупать те из них, которые содержат максимально разнообразное число экземпляров.

Микротом – тоже очень полезная штука для изготовления тонких срезов (менее полумиллиметра). Стоимость его невелика (примерно рублей 350), но зато не придется возиться с грубым “выпиливанием” образцов или наблюдать неуклюжие “обломки”.

Также не обойтись без набора стекол, которые бывают предметными и покровными. У хороших стекол с низкой интерференцией волн наилучшее соответствие с длиной световой волны. Стоимость наборов сравнительно невелика (от двухсот рублей до полутысячи). Покровными стеклами называют очень тоненькие стеклянные пластинки, которые могут быть в форме квадрата или круга. Применяются они, чтобы защитить препарат, помещенный на нижнее, предметное стекло.

От качества стекол зависит изображение, поэтому китайские наборы лучше не покупать.

Ценовой предел – наши рекомендации

Линейка популярных и качественных прямых микроскопов марки “Альтами” представляет модели стоимостью от 23 до 45 тысяч (цены ориентировочные) в зависимости от класса прибора. Модели сложнее и дороже, чем “БИО 8” (стоимостью около 60 000 рублей) приобретать для домашнего использования нет смысла, если речь не идет о покупке для практикующего на дому врача. Но мы с вами сейчас рассматриваем микроскоп для школьника.

Следует учитывать, что если комплектующие впоследствии можно поменять или докупить, то оптику или тип подсветки (галоген или светодиод) изменить в процессе эксплуатации не получится, так что определитесь с этим заранее.

Российский или китайский?

Перечисленные марки (“Альтами”, “Микромеды”, “Биомеды”), а также многие другие, несмотря на высокое качество, относятся все же к китайским (именно там производятся комплектующие для них).

Настоящие советские микроскопы (старые) – “Бимам 13” (другое название его “Микмед-2”), “Биолам” – сейчас можно найти, пожалуй, лишь бывшими в употреблении или не использовавшимися со старых времен. К ним довольно тяжело найти комплектующие (к тому же нужно знать, как их правильно поменять), вдобавок почти наверняка они потребуют замены смазки, но если данные моменты вас не смущают, то такой вариант – для вас.

В сравнении старые советские микроскопы немного превосходят современные по разрешающей способности, но к величине кривизны изображения это, как правило, не относится. Да и увеличения современные модели позволяют добиться немного большего.

Вариант попроще

Если вы не готовы тратить столь серьезные суммы, или интерес вашего ученика носит довольно поверхностный характер, то есть неплохой бюджетный вариант – микроскоп для школьника “Юный ученый”, который продается в комплекте с набором предметов для изучения общим числом около 60. Его окуляр обладает 10- и 20-кратным увеличением, к набору прилагается три различных объектива. Наименьший из них ведет к увеличению под микроскопом исследуемого объекта в пять раз, наибольший – в 60.

То есть если вы выберете самый мощный объектив микроскопа и настроите окуляр по максимуму, то добьетесь увеличения в 1200 раз. Этого достаточно для рассмотрения крылышек насекомых, волосков, шерсти домашних животных и еще массы всего.

В данном аппарате имеется встроенный прожектор, проецирующий изображения на стену или экран, – эту функцию можно использовать для занятий в группе. Кроме того, в комплект входит набор светофильтров для большей четкости и контрастности.

Похожие статьи

Содержание

Процесс активного развития детей начинается с периода, в котором он с особым интересом начинает познавать окружающий его мир. На фоне его исследований и познаний возникает большое количество вопросов о строении и жизнедеятельности представителей флоры и фауны, как протекает тот или иной биологический процесс и т. д.

В этот момент очень важно поддержать стремление ребенка к саморазвитию и направить его в правильном направлении. Один из лучших инструментов для достижения поставленной цели – микроскоп для детей.

Микроскоп для ребенка

Прежде чем направиться в магазин для приобретения данного приспособления стоит понять, что представляет собой микроскоп для ребенка и его характерные отличия от аналога, который используется в лабораториях и научных исследованиях.

Конструктивно он состоит из тех же основных элементов, что и профессиональный вариант: окуляр, тубус, отражающее зеркало, столик и штатив. Единственное отличие — это кратность увеличения, материал, из которого изготавливаются детали и, соответственно, цена.

image

У микроскопов со стеклянными линзами изображение более четкое

Внимание! Не рекомендуется приобретать микроскоп детям младше 5 лет из-за наличия хрупких и мелких деталей, которые при повреждении устройства могут нанести вред здоровью. К тому же не желательно подвергать излишним нагрузкам несформировавшийся глаз ребенка.

Разновидности микроскопов

Микроскоп для ребенка — это полнофункциональное оптическое устройство. Оно производится в различных исполнениях, каждое из которых имеет свою конструкцию. В зависимости от этого различают несколько видов приборов:

  • Монокулярный. Стандартный тип оборудования данного класса. Устройство оснащается одним окуляром для наблюдения за объектом на предметном столике. На степень увеличения прибора влияет значение кратности окуляра и увеличение самого объектива. К примеру, окуляр имеет кратность равную 10, а объектив способен увеличить исследуемый объект в 40 раз, тогда в конечном итоге микроскоп способен увеличить исследуемый материал в 400 раз.
  • Стереоскопический. Его конструкция и принцип работы аналогичны с устройством монокулярного типа. Единственное отличие заключается в наличии двух окуляров, что дает возможность пользователю наблюдать стереоизображение исследуемого материала или объекта. Подобная визуализация исследовательского процесса достигается за счет расположения под определенным углом окуляров по отношению друг к другу. Минусом данной конструкции является относительно низкая кратность увеличения, не более 100.
  • Электронный. Для подсветки предметного столика используется магнитная либо электростатическая линза. Кратность увеличения в несколько раз превышает значение монокулярного или стереоскопического микроскопа. Он предназначен для более углубленного анализа исследуемого объекта или среды.
  • Цифровой. Относится к передовому и современному классу данного оборудования. Процесс работы с подобный микроскоп заключается в подключении камеры к компьютеру или ноутбуку через USB-разъем. Это позволяет более детально и углубленно изучить исследуемый материал.

Совет. Выбор оптимальной модели микроскопа следует делать в зависимости от возраста ребенка. Так вы сможете подобрать оптимальную модель по соотношению цена/качество.

Назначение

Помимо конструкции, устройства и принципа работы, микроскопы классифицируются в зависимости от своего назначения. Каждый из них предназначен для выполнения определенного круга задач. Исходя из этого, их можно разделить на несколько классов:

  • Биологический. Применяется для исследования строения и движения клеток и прочих микроорганизмов. Для пользователя изучаемый объект предстает в плоском виде. Дополнительные аксессуары наделяют данный класс приборов некоторыми функциями и возможностями электронных и цифровых аналогов.
  • Учебный. По сути это монокулярный микроскоп. Он предназначен для проведения опытов и наблюдений по курсу биологии.
  • Карманный. Компактный вид устройства, имеющий минимальные габариты и относительно небольшое увеличение. Может использоваться при наблюдении за объектами флоры и фауны прямо на месте.
  • Игрушечный. Используется в качестве развлечения для детей. Для работы с ним требуется хорошее освещение, поскольку он обладает минимальным увеличением. image

    Микроскоп — полезный, развивающий подарок для ребенка

Рекомендации и советы по выбору оптимальной модели

Прежде чем начинать поиски нужной модели микроскопа стоит определиться с покупательской способностью и его назначением. Пойдя по такому пути в самом начале, сразу отсеивается до 70% различных моделей. Дальнейший выбор оптимального варианта из оставшихся 30% вариантов стоит делать, основываясь на их технических характеристиках:

  • Линзы. Рекомендуется приобретать оборудование со стеклянными линзами в объективе и окуляре. Если они изготовлены из прозрачного пластика, то изображение будет размытым (не будет необходимой четкости и точности) и они подвержены механическому воздействию: появление царапин, сколов, выщерблин и т. д.
  • Кратность увеличения. От значения данного параметра зависит не только способность увеличивать микроскопические объекты, но и четкость изображения.
  • Подсветка. Источник света влияет на восприятие глазом исследуемого материала. Рекомендуется использовать светодиодную подсветку. По сравнению с лампой накаливания она не нагревается, что может привести к ожогам, максимально приближена к натуральному освещению. Зеркало для подсветки должно иметь параболическую форму, это предотвратить появления царапин на его поверхности.
  • Дополнительные аксессуары и приспособления. В комплектацию микроскопа может, входит предметное и покрывное стекло, пинцеты, различные пробирки, чашка Петри и т. д.

Совет. Микроскоп, оснащенный револьверной головкой для смены объективов, имеет расширенный диапазон кратности увеличения, что позволяет детально и более углубленно изучить структуру исследуемых объектов разных размеров.

Правильно подобрав модель микроскопа в зависимости от назначения и возраста ребенка, вы подарите ему массу впечатлений от проведенных опытов и исследований. К тому же не до конца сформировавшееся глазное яблоко не будет испытывать лишней нагрузки, что не скажется на его зрении.

Как выбрать микроскоп для ребенка: видео

Как и многие другие технологические устройства, микроскопы имеют очень долгую историю. Самые ранние микроскопы содержали простое увеличительное стекло с малой мощностью (до 10 раз). Их использовали для наблюдения за маленькими насекомыми, такими как блохи.

Ранние версии оптических микроскопов были разработаны в конце 15 века. Хотя изобретатель неизвестен, за эти годы было сделано несколько заявлений. Использование микроскопов для исследования органических тканей появилось только в 1644 году.

Сегодня у нас есть микроскопы, которые могут обеспечить разрешение в 50 пикометров с увеличением до 50 миллионов раз, что достаточно для наблюдения ультраструктуры различных неорганических и биологических образцов.

Современные микроскопы можно классифицировать по-разному. Один из способов сгруппировать их – это способ их взаимодействия с образцами для создания изображений. Основываясь на том же факторе, мы перечислили 5 основных типов микроскопов и их использование.

1. Оптические микроскопы

Оптические микроскопы являются наиболее распространенными микроскопами, которые используют свет, чтобы пройти через образец для генерации изображений. Они могут иметь очень простую конструкцию, хотя сложные оптические микроскопы направлены на повышение разрешения и контрастности образца.

В дальнейшем их можно подразделить на два типа: простые и сложные микроскопы. Простой микроскоп использует одну линзу (например, увеличительное стекло) для увеличения, в то время как сложные микроскопы используют несколько линз для увеличения образца.

Они часто оснащены цифровой камерой, поэтому образец можно наблюдать с помощью компьютера. Это позволяет провести глубокий анализ микроскопического изображения.

Оптические микроскопы могут обеспечивать увеличение до 1250 раз с теоретическим пределом разрешения 0,250 микрометров. Тем не менее развитие сверхразрешенной флуоресцентной микроскопии в последнее десятилетие привело оптическую микроскопию в наноразмерность.

Варианты оптического микроскопа

  1. Стереомикроскоп: предназначен для наблюдения образцов в 3D при небольшом увеличении.
  2. Сравнительный микроскоп: используется для исследования бок о бок образцов.
  3. Поляризационный микроскоп: используется в оптической минералогии и петрологии для выявления минералов и горных пород в тонких срезах.
  4. Двухфотонный микроскоп: позволяет получать изображения живых тканей глубиной до 1 мм.
  5. Инвертированный микроскоп: исследует образец снизу; обычно используется для металлографии и клеточных культур в жидкости.
  6. Эпифлуоресцентный микроскоп: разработан для анализа образцов, содержащих флуорофоры.

Применение

Основные оптические микроскопы часто встречаются в классах и дома. Сложные широко используются в фармацевтических исследованиях, микробиологии, микроэлектронике, нанофизике и минералогии.

Они часто используются для исследования тканей с целью изучения проявлений заболеваний. В клинической медицине исследование биопсии или хирургического образца относится к гистопатологии.

2. Электронные микроскопы

Электронный микроскоп использует пучок ускоренных электронов для получения изображения образца. Точно так же, как оптические микроскопы используют стеклянные линзы, электронные микроскопы используют фасонные магнитные поля для создания систем электронно-оптических линз.

Поскольку длина волны электрона может быть намного короче, чем у фотонов, электронные микроскопы имеют более высокую разрешающую способность и увеличение, чем обычные оптические микроскопы. Они могут выявить структуры объектов размером с пикометр.

Первый электронный микроскоп, который превысил разрешение, достигнутое с помощью оптического микроскопа, был разработан немецким физиком Эрнстом Руской в ​​1933 году. С тех пор были сделаны многочисленные улучшения для дальнейшего улучшения увеличения и разрешения микроскопа.

Современные электронные микроскопы способны увеличивать образцы до 2000000 раз, однако они все еще полагаются на прототип Руска (разработанный в 1931 году) и его связь между разрешением и длиной волны.

Электронные микроскопы имеют некоторые ограничения: они дороги в изготовлении, обслуживании и должны быть размещены в стабильных средах, таких как системы подавления магнитного поля. Также объекты должны просматриваться в вакууме.

Современный просвечивающий электронный микроскоп | Предоставлено: Дэвид Морган из Кембриджа, Великобритания.

Два основных типа электронного микроскопа

1. Просвечивающий электронный микроскоп: используется для наблюдения за тонкими образцами, через которые могут проходить электроны, создавая проекционное изображение. Он может захватывать мелкие детали размером с колонку атомов.

В этом случае образец обычно представляет собой очень тонкий срез (<100 нанометров), и изображение создается в результате взаимодействия образца с электронами при прохождении пучка через образец.</p>

Современные аппаратные корректоры могут помочь этому микроскопу достичь высокого разрешения в 50 пикометров с увеличением, превышающим 50 000 000 раз.

2. Сканирующий электронный микроскоп: генерирует изображения образца путем сканирования его поверхности сфокусированным пучком электронов. Электроны взаимодействуют с атомами в образце и генерируют сигналы, которые содержат данные о составе образца и топографии поверхности.

Поскольку этот тип микроскопии отображает только поверхность (не внутреннюю часть) образцов, он обеспечивает низкое разрешение изображения по сравнению с просвечивающей электронной микроскопией. Тем не менее он может генерировать хорошее качество трехмерных изображений поверхности образца.

Вещи, которые вы можете наблюдать с помощью сканирующего электронного микроскопа, включают элементы на головке булавки, волосковые клетки внутреннего уха человека и поверхность глаза мухи.

Применение

Электронные микроскопы широко используются для изучения ультраструктуры различных неорганических и биологических образцов, таких как металлы, кристаллы, образцы биопсии, крупные молекулы, клетки и микроорганизмы.

Современные электронные микроскопы оснащены специальными цифровыми камерами и фрейм-грабберами для записи структуры образца и создания электронных микрофотографий.

Они часто используются в промышленных целях (для помощи в процессе производства) и в криминалистике (для предоставления доказательств в преступных и юридических целях).

3. Сканирующий зондовый микроскоп

Сканирующая зондовая микроскопия была открыта в 1981 году для изображения поверхности образца на атомном уровне. Он использует физический зонд для сканирования образца и формирования сильно увеличенных изображений.

Исходя из цели исследования, в сканирующей зондовой микроскопии используются разные методы.

Например, прибор может быть установлен в «режим постукивания», при котором кантилевер колеблется так, что наконечник периодически касается поверхности образца. Это в основном используется для изучения образцов с мягкими поверхностями.

В другом способе микроскоп может быть установлен в «режим контакта», при котором между острием кантилевера и поверхностью образца прикладывается постоянная сила. Этот режим быстро создает изображения поверхности.

В отличие от методов электронной микроскопии, образцы не требуют помещения в определенную вакуумную среду. Вместо этого они могут отображаться на воздухе при комнатном давлении и температуре или внутри жидкого реакционного сосуда. Однако, они часто не полезны для анализировать жидкост-жидкостные или твердотельные интерфейсы.

Современный сканирующий зондовый микроскоп

Распространенные типы сканирующих зондовых микроскопов

А) Атомно-силовой микроскоп: имеет разрешение порядка долей нанометра, что позволяет получать изображения практически любого типа поверхности, включая стекло, полимеры и биологические образцы.

B) Сканирующая оптическая микроскопия ближнего поля: может достигать производительности пространственного разрешения сверх классического дифракционного предела. Он может быть использован для изучения всех проводящих, непроводящих и прозрачных образцов.

C) Сканирующие туннельные микроскопы: могут достигать бокового разрешения 0,1 нм и глубины 0,01 нм. Образцы могут быть отображены в экстремальных условиях, при температурах от почти абсолютного нуля до более 1000 ° C.

Кроме того, сканирующий туннельный микроскоп был первым микроскопом, который использовал квантовые концепции , которые проложили путь к развитию квантового микроскопа запутывания и фотоионизационного микроскопа.

Применение

Сканирующие зондовые микроскопы используются в широком спектре естественных наук, включая медицину, клеточную и молекулярную биологию, физику твердого тела, химию полимеров и полупроводниковую науку и технику.

Например, в молекулярной биологии этот метод микроскопии используется для анализа структуры и механических характеристик белковых комплексов и сборок. В клеточной биологии он используется для определения взаимодействия между определенными клетками и различения нормальных клеток и раковых клеток на основе твердости клеток.

В физике твердого тела он используется для изучения взаимодействия между соседними атомами и изменений в расположении атомов посредством атомных манипуляций.

4. Сканирующие акустические микроскопы

Сканирующий акустический микроскоп измеряет изменения акустического импеданса с помощью звуковых волн. Он в основном используется для неразрушающей оценки, анализа отказов и выявления дефектов в недрах материалов, в том числе обнаруженных в интегральных микросхемах.

Этот тип микроскопа был впервые разработан в 1974 году в микроволновой лаборатории Стэнфордского университета. С тех пор были сделаны многочисленные улучшения для повышения его точности и разрешения.

Микроскоп непосредственно фокусирует звук от датчика в маленькой точке на образце. Звук, падающий на объекты, либо поглощается, либо рассеивается под разными углами. Эти рассеянные импульсы, распространяющиеся в определенном направлении, дают полезную информацию об образце.

Разрешение образца изображения либо ограничено шириной звукового луча (зависит от частоты звука), либо физическим разрешением сканирования.

В отличие от обычных оптических микроскопов, которые позволяют наблюдать поверхность образца, акустические микроскопы фокусируются на определенной точке и получают изображения из более глубоких слоев. Кроме того, они обеспечивают более точные результаты и увеличивают объём данных, сохраняя при этом целостность образца.

Сканирующий акустический микроскоп Sonix HS 1000

Применение

Многие компании используют этот тип микроскопии в аналитических лабораториях для определения качества своих электронных компонентов. Производители также используют его для контроля качества, квалификации поставщиков, тестирования надежности продукции, а также для исследований и разработок.

В биологии эти микроскопы предоставляют полезные данные о физических силах, удерживающих структуры в определенных формах, таких как эластичность клеток и тканей. Это чрезвычайно полезно при изучении процесса подвижности клеток (способность организма самостоятельно передвигаться, используя метаболическую энергию).

5. Рентгеновский микроскоп

Рентгеновские микроскопы генерируют увеличенные изображения объектов, используя электромагнитное излучение в мягком луче. Они способны выдавать 3D-изображение компьютерной томографии относительно больших образцов с высоким разрешением.

Для идентификации рентгеновских лучей, проходящих через образец, используется детектор с зарядовой связью. Поскольку рентгеновские лучи легко проникают сквозь вещество, микроскопы этого типа могут отображать внутреннюю часть образцов, непрозрачных для видимого света.

Современные рентгеновские микроскопы позволяют наблюдать различные образцы, в том числе те, которые имеют низкий контраст поглощения и более плотный материал, например керамические композиты. Чтобы достичь этого, микроскоп изменяет длину волны рентгеновского излучения, что увеличивает контраст или проникновение.

Его разрешение лежит между оптической микроскопией и электронной микроскопией. В отличие от традиционных электронных микроскопов, рентгеновские микроскопы могут отображать толстые биологические материалы в их естественном состоянии.

Рентгеновский микроскоп ZEISS Xradia 510 Versa

Применение

Рентгеновская микроскопия оказалась чрезвычайно полезной в области медицины и материаловедения. Он был использован для анализа структуры различных тканей и образцов биопсии.

В области материаловедения рентгеновские микроскопы могут определять структуру кристалла вплоть до размещения отдельных атомов внутри его молекул. Он также обеспечивает неразрушающий, неинвазивный метод поиска дефектов в трех измерениях.

Проводить исследование окружающего мира с помощью микроскопической техники интересно не только взрослому, но и ребенку. В настоящее время как в специализированных, так и в магазинах развивающих игрушек представлен большой выбор микроскопов для детей. Чтобы среди данного разнообразия правильно подобрать прибор, нужно разобраться, в чем преимущества и недостатки предлагаемых моделей, и дать им сравнительную характеристику.

Чаще всего выбор стоит между биологическими монокулярными и стереомикроскопами: доступные по цене и элементарные в работе, они тем не менее помогут ребенку чувствовать себя настоящим исследователем.

Главное их различие состоит в том, какие именно предметы можно изучать с помощью данного лабораторного оборудования. Если стереоскопический микроскоп подходит для наблюдения «макрообъектов», например, крупных жуков и других насекомых, то биологические, имея большее увеличение, дают возможность рассматривать тонкие срезы объектов (клетки растений, шерсть и т.д.) и микропрепараты. В соответствии с этим различается и принцип работы с прибором: для биологического, в отличие от стереомикроскопа, кроме использования готовых микропрепаратов, дающих, например, представление о водных обитателях, тканях животного и человека, нужно самостоятельно подготавливать образцы. Используя пинцет для захвата миниатюрных объектов, лезвия для осуществления срезов, некоторые химические препараты для окрашивания, а также предметные и покровные стекла, ребенок сможет оценить как сложность, так и увлекательность исследовательской деятельности.

image

Однако у стереомикроскопа перед биологическим тоже есть преимущество. Исходя из названия, данный прибор должен обеспечивать стереоскопический эффект, то есть создавать объемное изображение. Наблюдение предметов в трехмерном поле привычно для человеческого зрения и не нарушает физиологического восприятия предметов, что особенно важно при работе ребенка с микроскопом. Правда, в данном случае нужно уметь правильно настроить расстояние между окулярами, то есть так, чтобы оно соответствовало межзрачковому расстоянию. Иногда это в принципе невозможно, так как прибор может быть не рассчитан на слишком маленькое межзрачковое расстояние ребенка. А при неправильной настройке микроскопа возможны усталость и даже ухудшение зрения не только у детей, но и у взрослых людей. С другой стороны простые биологические модели, коими и являются школьные микроскопы, – монокулярные, то есть имеют только один окуляр. В этом случае при рассматривании предмета одним глазом приходится часто щуриться, что также может вызвать дискомфорт для зрения.

image

Как биологические, так и стереоскопические микроскопы имеют светодиодную подсветку, работающую от встроенных батареек. Это удобно для работы с ними, скажем, в школе, где не всегда есть нужное количество розеток, а микроскопов много. Например, модели Альтами Школьный, Альтами Школьный 35 и Альтами Школьный 2 используются в классах биологии, физики, а также они подходят для занятий с дошкольниками. Среди стереомикроскопов пользуется доверием модель Альтами ПС 2X/4X. Также эти микроскопы могут питаться и через адаптер.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий