Простое малогабаритное автоматическое зарядное устройство для пальчиковых аккумуляторов

На этот раз речь пойдет о конструировании простейшего USB-зарядника для Ni-Cd и Ni-Mh аккумуляторных батарей.

image

Схема довольно хорошего зарядника проста и может быть реализована с бюджетом всего в 20 рублей. Это уже дешевле, чем любая китайская зарядка. Сердцем нашего зарядного устройства всем хорошо знакомая микросхема линейного стабилизатора LM317.

image
микросхема линейного стабилизатора LM317

На вход схемы подается напряжение 5 В от любого USB-порта.

Схема

Микросхема стабилизирует напряжение до уровня 1,5 В. Это напряжение полностью заряженного Ni-Mh аккумулятора.

А работает устройство очень просто. Аккумулятор будет заряжаться напряжением 1,5-1,6 Вольт от микросхемы. Резистор R1 в качестве датчика тока одновременно ограничивает ток заряда. Путем его подбора ток можно уменьшить или увеличить.

Когда на выход схемы подключен аккумулятор, на резисторе R1 образуется падение напряжения. Его достаточно для срабатывания транзистора, в коллекторную цепь которого подключен светодиод. Последний загорается и по мере заряда аккумулятора будет потухать до полного отключения. Это произойдет в конце зарядного процесса.

Таким образом, диод горит, когда аккумулятор заряжается, и тухнет, когда последний полностью заряжен. Одновременно по мере заряда аккумулятора будет снижаться сила тока, и в конце ее значение будет равно 0.

Из этого следует, что перезаряд и выход из строя аккумулятора невозможны.

Микросхема LM317 работает в линейном режиме, поэтому небольшой теплоотвод не помешает. Хотя при токе 300 мА нагрев микросхемы в пределах нормы. Светодиод желательно подобрать с минимальным рабочим напряжением. Цвет абсолютно не важен. Вместо BC337 допускается использование любого маломощного транзистора обратной проводимости, хоть на КТ315. Желательная мощность резистора R1 0,5-1 Ватт. Все оставшиеся резисторы – 0,25 и даже 0,125 Ватт. Поскольку диапазон напряжений очень узкий, то даже погрешность резисторов может повлиять на работу схемы. Поэтому резистор R2 настоятельно рекомендуется заменить на многооборотный сопротивлением 100 Ом.

С его помощью можно очень точно отрегулировать нужное выходное напряжение.

Сперва нужно найти все необходимые компоненты, а также слот для батареек.

Устройство может заряжать аккумуляторы практически любого стандарта, если приспособить соответствующий слот. При сборке можно не использовать печатную плату. Монтаж делается навесным способом. Компоненты приклеиваются под слот батареек и заливаются термоклеем, поскольку схема очень надежна в работе.

Распиновка USB:

Распиновка выводов микросхемы:

Собранное устройство выглядит примерно так:

Собранное устройство

Но может выглядеть гораздо лучше.

Только необходимо подобрать светодиод с минимально возможным напряжением свечения, в противном случае он может вообще не светиться. По этой схеме можно заряжать несколько аккумуляторов, но рекомендуется использовать только для заряда одного.

USB-зарядник для Ni-Mh аккумуляторов своими руками

Автор: АКА КАСЬЯН

Добавить ссылку на обсуждение статьи на форуме РадиоКот >Схемы >Питание >Зарядные устройства >
Добавить тег

Зарядное устройство для Ni-Cd и Ni-MH аккумуляторов. Очень простое

Так, товарищи. Сейчас мы с вами будем заряжать аккумуляторы, просто, качественно, а главное – быстро. Для чего воспользуемся микросхемой MAX713 от компании MAXIM. Это специализированная микросхема, заточенная именно под зарядку указанных типов аккумуляторов.

  • заряжать Никель-Кадмиевые и Никель-МеталлоГидридные аккумуляторы в количестве от 1 до 16 штук одновременно;
  • в режиме быстрого заряда регулировать ток заряда от С/3 до 4С, где С – емкость аккумулятора;
  • в режиме медленного заряда доводить аккумуляторы до кондиции током С/16;
  • отслеживание состояния аккумулятора и автоматический переход от быстрого заряда к медленному;
  • в отсутствии зарядного тока через микросхему “утекает” всего 5мкА от аккумуляторов;
  • возможность отключения заряда по температурным датчикам или по таймеру;

Вообще говоря, как мы помним еще со староглиняных времен, заряжать аккумуляторы рекомендовалось током 0,1С, где С – емкость аккумулятора. Однако, с тех пор утекло много пива и производители научились делать более совершенные аккумуляторы, позволяющие учинять над собой такое безобразие, как быстрый заряд (Fast Charge). “It”s okey”, говорят они – вы можете заряжать наши аккумуляторы гораздо большим током – главное не превышать значение 4С, иначе может случиться big-bada-bum.

Разумеется, чем больший зарядный ток используется в процессе зарядки, тем меньше времени нужно на эту самую зарядку. Однако, все же, увлекаться сильно не стоит – ток током, а долговечность аккумулятора тоже не последнее дело. Поэтому, в MAX713 реализован не только быстрый, но и медленный заряд (Trickle Charge), который включается по достижении аккумулятором полного заряда большим зарядным током.

Схема, показанная выше позволяет заряжать два аккумулятора, ёмкостью по 1000мА/ч каждый, током С/2, то есть 500мА. Имеется индикация включения питания – HL1 и индикация быстрого заряда – HL2. Аккумуляторы включаются последовательно. Входное напряжение должно быть равно 6 вольтам. Вы еще тут? А ну бегом за паяльником!

Как я уже говорил, эта микросхема позволяет заряжать до 16 аккумуляторов, током до 4С. Итак, что же от нас требуется, чтобы спроектировать зарядное устройство под наши конкретные цели?

  1. Определиться с зарядным током аккумуляторов. Неплохо было бы узнать, какой максимальный зарядный ток рекомендует производитель. Ну а если не узнали, тогда уж на свой страх и риск. Для начала, я бы не стал превышать С/2.
  2. Решить сколько аккумуляторов нужно заряжать одновременно. После этого, согласно Таблице 1 определить, куда припаивать выводы PGM0 и PGM1. Разумеется, чтобы не перепаивать каждый раз микросхему, нужно предусмотреть переключатель, если нужно заряжать разное количество аккумуляторов.
  3. Определить мощность выходного транзистора, после чего по справочнику подобрать подходящий. Мощность определяется так: P=(Uin – Ubatt)*Icharge, где: Uin – максимальное входное напряжение, Ubatt – напряжение заряжаемых аккумуляторов – суммарное, разумеется, Icharge – зарядный ток.
  4. Посчитать сопротивление R1. R1=(Vin-5)/5 – сопротивление получается в килоомах, чтобы получить Омы надо посчитанное значение умножить на 1000.
  5. Определить сопротивление R6. R6=0.25/Icharge Если Icharge подставляется в амперах, сопротивление мы получим в Омах, если а миллиамперах, то в килоомах. Не теряйтесь.
  6. Выбираем время заряда. Это нужно для того, чтобы в случае неисправного аккумулятора, зарядное устройство не гоняло его, бедолагу бесконечное число часов, а отключило по таймеру, даже если аккумулятор и не зарядился. Для выбора времени заряда пользуемся Таблицей 2. И прикручиваем ноги PGM2 и PGM3 согласно этой таблице.

Собственно говоря и все. Дальше будут таблицы.

Таблица 1. Задание количества заряжаемых аккумуляторов.

Количество аккумуляторов

Соединить PGM 1 с…

Соединить PGM 0 с…

1

V +

V+

2

Не подсоединять

V+

3

REF

V+

4

BATT-

V+

5

V+

Не подсоединять

6

Не подсоединять

Не подсоединять

7

REF

Не подсоединять

8

BATT –

Не подсоединять

9

V+

REF

10

Не подсоединять

REF

11

REF

REF

12

BATT-

REF

13

V+

BATT-

14

Не подсоединять

BATT –

15

REF

BATT-

16

BATT-

BATT-

Таблица 2. Задание максимального времени заряда.

Время заряда (мин)

Выключение по падению напряжения

Соединить PGM 3 с…

Соединить PGM 2 с…

22

Выключено

V +

Не подсоединять

22

Включено

V +

REF

33

Выключено

V +

V+

33

Включено

V +

BATT-

45

Выключено

Не подсоединять

Не подсоединять

45

Включено

Не подсоединять

REF

66

Выключено

Не подсоединять

V+

66

Включено

Не подсоединять

BATT-

90

Выключено

REF

Не подсоединять

90

Включено

REF

REF

132

Выключено

REF

V+

132

Включено

REF

BATT-

180

Выключено

BATT –

Не подсоединять

180

Включено

BATT-

REF

264

Выключено

BATT –

V+

264

Включено

BATT –

BATT-

См. так же: Хождение под мухой или две недели с MAX713.

–>

Как вам эта статья?

Заработало ли это устройство у вас?

36 2 5
9 5 2

–> –> SELECTORNEWS – покупка, обмен и продажа трафика –>–>Каталог

Главная / Мастерская Содержание скрыть 1 Подготовка компонентов 1.1 Выбор паяльника 1.2 Выбор флюса 1.3 Выбор припоя 2 Какие типы АКБ можно паять 3 Способы соединений батареек 4 Что лучше пайка или точечная сварка 5 Как правильно паять

При замене отслуживших свой срок элементов аккумулятора шуруповерта потребуется соединить банки в батарею. Самый распространенный способ для этого – пайка. С ее помощью можно соединять как устаревшие никель-кадмиевые элементы, так и самые современные литий-ионные. Спаять аккумуляторы для шуруповерта можно своими руками. Для этого потребуется набор инструментов, материалов, а также определенная квалификация.

Для пайки надо подготовить паяльник с расходниками:

  • флюсом;
  • припоем.

От выбора инструмента и материалов зависит качество пайки, а следовательно – надежность соединения и долговечность собранной батареи. Также надо заготовить шинки – металлические полоски, которыми надо соединить все аккумуляторы шуруповерта.

Выбор паяльника

Паяльник выбирается по мощности – так, чтобы не перегреть аккумулятор при пайке. На неискушенный взгляд, чем меньше мощность нагревательного инструмента, тем меньше риски. На самом деле, это не так. Успех быстрой, надежной пайки – в быстром создании локального нагрева корпуса так, чтобы пятно повышенной температуры не распространялось далеко за пределы места соединения. Маломощным паяльником так сделать не получится – разогрев займет много времени, за этот период успеет повыситься температура внутри банки. Поэтому надо выбрать электронагревательный инструмент мощностью не менее 40 ватт (выше 100 ватт тоже не надо), и паять быстрыми, точными движениями. Это потребует навыка.

Выбор флюса

Флюс выбирается исходя из спаиваемых материалов. Если шинку можно подобрать из любого металла, легко поддающегося пайке (медь, латунь, никель) и лудить ее с помощью составов на основе канифоли, то корпус аккумуляторного элемента придется паять, каков он есть. Из какого сплава изготовлена банка, может не знать даже производитель АКБ (он закупает готовый металл). Однако современные флюсы могут паять даже неподдающийся алюминий, вся задача состоит в правильном подборе.

Самый лучший вариант – если есть неисправный элемент, предназначенный в утилизацию. На нем можно потренироваться – опробовать флюс. На заменяемой банке проводить тесты не стоит – при неоднократной перепайке аккумулятор несложно перегреть.

Кислотный флюс.

Исходя из накопленного опыта, корпуса аккумуляторов легко паяются кислотными флюсами, поэтому, если нет возможности подобрать расходный материал, это беспроигрышный вариант. Но у них есть недостаток – незамеченные и неудаленные брызги кислоты со временем вызывают коррозию (за исключением ортофосфорной кислоты). Поэтому паять надо аккуратно, после пайки зону монтажа следует тщательно протереть, потом промыть жидкостью щелочного типа (хотя бы мыльным раствором). В качестве кислотного флюса можно применить обычный аптечный аспирин.

Важно! Кислотные флюсы нельзя использовать совместно с паяльниками со стальными жалами, имеющими гальваническое покрытие. Кислота «съест» нанесенный слой, пользоваться жалом станет невозможно. Новое жало стоит почти как новый паяльник.

Выбор припоя

Основной критерий выбора припоя – температура плавления. Она не должна быть слишком высокой, чтобы уменьшить риск перегрева банок. Температуры плавления распространенных припоев (ликвидус) приведены в таблице.

Припой Температура полного плавления, град.С
ПОС-40 238
ПОС-60 190
ПОС-90 220
Сплав Розе (ПОСВ-50) 94
Сплав Вуда 68,5

Сравнивая характеристики припоев, становится понятно, что из распространенных сплавов оптимальный вариант – ПОС-60 (ПОС-61). Существует соблазн использовать легкоплавкие припои – сплав Вуда и сплав Розе. Это не лучшая идея по двум причинам:

  • при эксплуатации АКБ возможен разогрев элементов до температур размягчения сплавов, что приведет к ослаблению места пайки;
  • припои на основе висмута довольно хрупки.

Сплав Вуда, к тому же, токсичен за счет содержания кадмия.

Какие типы АКБ можно паять

Если говорить о возможности пайки выводов, то таким образом можно соединять любые элементы, надо лишь применять правильный флюс. Все аккумуляторы не любят перегревов, поэтому надо принимать специальные меры, чтобы этого избежать.

Литий-ионные банки стоят особняком – они крайне чувствительны к повышению температуры. И дело не только в потенциальной порче химических реагентов. Li-Ion элементы содержат внутри корпуса дополнительные устройства, повышающие безопасность эксплуатации. Например, клапан, открывающийся при повышении давления внутри банки. Эти устройства изготовлены, большей частью, из пластика, и перегрев практически всегда выводит их из строя. Поэтому эксплуатировать такие банки становится опасным, и пайку применять можно только в крайнем случае и очень аккуратно.

Акккумулятор с приваренными шинками.

В продаже имеются элементы 18650 с уже установленными шинками, которые хорошо поддаются лужению даже обычными флюсами. Такие банки можно паять, хотя помнить о предосторожности надо и в этом случае.

Способы соединений батареек

Кроме пайки существуют и другие способы соединения банок в аккумуляторные батареи:

  • точечной сваркой;
  • посредством держателей (холдеров);
  • прижиманием полос к выводам магнитами из неодима;
  • применением токопроводящего клея.

Холдер для элементов 18650.

Все эти способы, за исключением сварки, не дают надежного контакта, поэтому в цепях с большими токами их лучше не применять.

Крепление проводника неодимовым магнитом.

У каждого способа есть свои преимущества и недостатки. При точечной сварке процесс происходит быстро, и перегрев практически исключен. Это важно при соединении в батарею Li-Ion элементов. Но площадь пятна контакта проконтролировать невозможно, и может получиться так, что шинка приварится не по всей поверхности вывода банки. Так как при работе даже бытового шуруповерта потребляемые токи составляют несколько ампер (в особо сложных режимах более 10 А), то при малой площади контакта может возникнуть локальный перегрев. К тому же высокое переходное сопротивление может ограничивать ток в цепи, и электроинструмент не сможет выдать полный крутящий момент. Оборудование для точечной сварки (особенно, приспособленное именно для соединения элементов в батарею) намного более труднодоступно, чем паяльник.

Пайка же позволяет получить максимально возможную площадь соединения, а паяльник имеется в арсенале почти каждого домашнего мастера. Но в не очень умелых руках перегрев практически неизбежен. Для Ni Cd и NiMH аккумуляторов это может привести к снижению емкости и срока эксплуатации, а для литий ионных последствия могут быть еще хуже.

Читайте также

Как перевести шуруповерт на литиевые аккумуляторы

Как правильно паять

В первую очередь, поверхности для пайки надо подготовить:

  • удалить видимые загрязнения, отмыв место будущего контакта органическими растворителями;
  • если грязь и коррозию смыть не удастся, их придется счистить мелкой наждачной шкуркой;
  • место пайки надо обезжирить спиртом.

Далее поверхности надо предварительно облудить. Для этого на всю спаиваемую поверхность надо обильно нанести слой флюса. Жидкий или мягкий флюс наносится кисточкой или выдавливается из тюбика. Твердый флюс (канифоль и т.п.) надо расплавить паяльником, перенести каплю расплава на место пайки и покрыть всю площадь пятна. Жалеть флюс не надо – излишки потом легко удалить растворителем, а недостаток не позволит качественно облудить проводник.

Правильно облуженные соединительные шинки.

Далее на жало паяльника надо набрать каплю припоя, перенести ее на облуживаемую поверхность и, прогревая участок, растереть по всей площади контакта так, чтобы припой прилип к поверхности. Для проверки можно поддеть покрытие ногтем или тонкой отверткой (после остывания!) – отслаиваться припой не должен.

Правильно облуженные выводы аккумулятора.

Припоя должно быть достаточно для создания ровного покрытия, излишков допускать не надо – контакт от этого надежнее не будет. Понимание необходимого количества приходит с опытом.

Припаивание шинок к банкам аккумуляторов.

Облуженные поверхности надо приложить друг к другу и быстро и точно прогреть паяльником. После того, как жало будет убрано, двигать детали до полного затвердевания припоя нельзя. Если не получилось – пайку надо повторить. Чтобы ускорить остывание, после отъема паяльника на место спайки надо сильно подуть.

В завершении серия видеороликов о пайке.

Качество паяного соединения во многом определяется квалификацией мастера. Поэтому перед началом сборки батареи лучше потренироваться на обрезках металла и подобрать расходные материалы для достижения наилучшего качества. Тогда батарея проработает долго и не подведет в самый неподходящий момент.

Недавно получил комплект никель-металлогидридных аккумуляторных (NiMH) батарей для шуруповерта «Bosch» 14.4V, 2.6Ah. Аккумуляторы фактически имели малую емкость, хотя эксплуатировались под нагрузкой лишь незначительное время и имели малое число циклов разряд(работа) – заряд. По этой причине решил разобрать батареи, выполнить их поэлементные замеры для определения характеристик и возможного восстановления, использования «выживших» элементов в других самоделках требующих отдачи большого тока в короткое время. Эта работа поэтапно описана в заметке «Автоматическое устройство для разряда аккумулятора». После разборки батареибыл выполнен подготовительный разряд элементов на указанном устройстве, с контролем по минимальному остаточному напряжению 0,9…1,0 вольт, для исключения глубокого разряда. Далее потребовалось простое и надежное зарядное устройство для их полной зарядки. Требования к зарядному устройству Производители NiMH аккумуляторов рекомендуют выполнять заряд с величиной тока в интервале 0,75-1,0С. При этих режимах, КПД процесса зарядки, большую часть цикла, максимально высокий. Но к моменту окончания процесса зарядки, КПД резко снижается и энергия переходит в выделение тепла. Внутри элемента резко растёт температура и давление. Аккумуляторы имеют аварийный клапан, который может открыться при увеличении давления. При этом свойства аккумулятора будут безвозвратно потеряны. Да и сама высокая температура оказывает негативное влияние на структуру электродов батарейки. По этой причине, для никель-металлогидридных аккумуляторов очень важным является контроль режимов и состояния батареи при зарядке, момента окончания процесса зарядки, для исключения перезаряда или разрушения аккумулятора. Как указывалось, в конце процесса заряда NiMH аккумуляторной батареи её температура начинает расти. Это является основным параметром для отключения заряда. Обычно в качестве критерия прекращения заряда берётся рост температуры более чем на 1 градус за минуту. Но при небольших токах заряда (менее 0,5С), когда температура растёт достаточно медленно, это обнаружить сложно. Для этого может быть использовано абсолютное значение температуры. Таким значением принимают 45-50°C. В этом случае заряд должен быть прерван, и возобновлён (при необходимости) после остывания элемента. Также необходимо установить ограничение по времени заряда. Его можно рассчитать по емкости батареи, величине тока зарядки и КПД процесса, плюс 5-10 процентов. В этом случае, при нормальной температуре процесса, зарядное устройство отключают по установленному времени. При глубоком разряде NiMH аккумулятора (менее 0,8В) ток заряда, предварительно, устанавливается на уровне 0,1…0,3С. По времени этот этап ограничен и составляет около 30 минут. Если за это время аккумулятор не восстанавливает напряжения 0,9…1,0В, то элемент беспереспективен. В положительном случае, далее выполняют заряд с увеличенной величиной тока в интервале 0,5-1,0С. И еще, о сверхбыстром заряде аккумуляторных батарей. Известно, что при заряде до 70% своей ёмкости никель-металлогидридный аккумулятор имеет КПД зарядки близкий к 100 процентам. Поэтому, на этом этапе возможно увеличить ток для ускоренного его прохождения. Токи в таких случая ограничивают значением 10С. Высокий ток легко может привести к перегреву аккумулятора и разрушению структуры его электродов. Поэтому использование сверхбыстрого заряда рекомендуется только при постоянном контроле процесса зарядки. Процесс изготовления зарядного устройства для NiMH аккумулятора рассмотрен ниже. 1. Установление исходных данных. – Зарядка элемента постоянной величиной тока 0,5…1,0С до номинальной емкости. – Выходной ток (регулируемый) – 20…400 (800) ma. – Стабилизация выходного тока. – Выходное напряжение 1,3…1,8 В. – Входное напряжение – 9…12 В. – Входной ток – 400 (1000) ma. 2. В качестве источника питания для ЗУ выбираем мобильный адаптер 220/9 вольт, 400 ma. Возможна замена на более мощный (например, 220/1,6…12В, 1000 ma). Изменений в конструкции ЗУ при этом не потребуется.3. Рассмотрим схему зарядного устройстваВариант конструкции зарядного устройства аккумулятора представляет собой узел стабилизации и ограничения тока и выполнен на одном элементе операционного усилителя (ОУ) и мощном составном n-p-n транзисторе КТ829А. ЗУ дает возможность регулировки тока заряда. Стабилизации установленного тока происходит за счет повышения или понижения выходного напряжения. В точке соединения резистора R1 и стабилитрона VD1 образуется стабильное опорное напряжение. Изменяя величину напряжения, снятого с потенциометра R2 резисторного делителя, на неинвертирующем входе операционного усилителя (вывод 3), изменяем величину выходного напряжения (вывод 6), а следовательно и ток через VТ1. Резистором R5 ограничиваем ток в цепи заряжаемого аккумулятора. Изменение падения напряжения на R5 при отклонении зарядного тока, через обратную связь (ООС) на инвертирующий вход ОУ (вывод 2), корректирует и стабилизирует выходной ток ЗУ. Установленный R2 ток будет стабилен до конца зарядки этого и последующих однотипных аккумуляторов. Данная схема стабилизатора тока весьма универсальна и может применяться для ограничения тока в различных конструкциях. Схема легка в повторении, состоит из простых и доступных радиокомпонентов и при верном монтаже сразу начинают работать. Особенностью данной схемы является возможность применить имеющиеся в наличии операционные усилители с напряжением питания на уровне 12В, например, К140УД6, К140УД608, К140УД12, К140УД1208, LM358, LM324, TL071/081. Транзистор КТ829А – основной силовой элемент и весь ток проходит по нему, поэтому обязательно устанавливается на теплоотвод. Выбор транзистора определяется необходимым зарядным током установленным для зарядки аккумулятора. 4. Выбираем корпус для зарядного устройства. Он определит форму, конструкцию, условия теплоотвода и внешний вид ЗУ. В данном случае выбран алюминиевый аэрозольный баллон. Удаляем его верхнюю часть.5. Отрезаем от универсальной монтажной платы часть, равную по ширине внутреннему диаметру баллона. Желательно плотное, без качки, вхождение платы в баллон.6. Комплектуем ЗУ деталями согласно схемы. Аэрозольный колпачок по размеру хорошо подходит в качестве ручки потенциометра.7. Закрепляем транзистор на радиаторе и устанавливаем радиатор на краю платы, согласно фото.8. Припаиваем выводы транзистора к контактным площадкам платы. 9. Распаиваем сопротивление, ограничивающее максимально возможный ток заряда аккумулятора. Так как весь ток заряда проходит через резистор R5, то для лучшего охлаждения резистора, он набран из широко распространенных (МЛТ-1) четырех паралельно соединенных резисторов по 22 ома, мощностью по 1 вт. Дополнительно, последовательно установлен резистор на 1,8 ома мощностью 5 вт. Общее сопротивление R5 составило около 7 ом ( средней мощностью 4 вт). Сопротивление и комплектация резисторов зависят от планируемого тока зарядки и наличия деталей у изготовителя. 10. Соберем управляющую часть ЗУ на макетной монтажной плате. Присоединим изготовленную силовую часть ЗУ и подключим нагрузку – заряжаемый аккумулятор. Для проверки работы и отладки режимов, подключим ЗУ к регулируемому блоку питания. Проверяем диапазон регулировки зарядного тока, при необходимости подбираем величину резисторов R2 и R3. 11. Переносим управляющую часть ЗУ на рабочую платку и присоединяем ее к силовой части. 12. На плате, сбоку, устанавливаем гнездо для подключения блока питания ЗУ (адаптера или другого БП). 13. Устанавливаем ЗУ в корпус, расположив радиатор в его верхней (открытой) части. Предварительно сверлим в нижней цилиндрической части корпуса ряд отверстий диаметром 6 мм. Рабочее положение корпуса ЗУ вертикальное, поэтому в нем, аналогично печной трубе, создается естественная тяга. Воздух, нагреваемый резисторами и радиатором поднимается из корпуса вверх, затягивая холодный в нижние отверстия. Такая вентиляция работает эффективно, потому что значительный нагрев радиатора при 2-х, 3-х часовой работе ЗУ, практически не ощущается нагревом корпуса. 14. Зарядное устройство собрано рабочим комплектом и испытано под нагрузкой, полной зарядкой десятка аккумуляторов. ЗУ работает стабильно. При этом периодически ведётся контроль расчетного времени зарядки, а также температуры аккумулятора для отключения ЗУ при критических значениях. Использование «крокодильчиков» для подключения аккумулятора позволяет подключить к ЗУ контрольный амперметр (мультиметр) для регулировки зарядного тока. При зарядке последующих однотипных элементов, амперметр не нужен. Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий