Содержание
- Подпишись на новости!
- Bta 16 600v схема включения
- Что такое симистор?
- Описание принципа работы и устройства
- Особенности
- Применение
- Как проверить работоспособность симистора?
- Схема управления мощностью паяльника
- Простой регулятор мощности на 220 Вольт из 5 деталей.
- Варианты схем регулятора
- Как избежать 3 частых ошибок при работе с симистором.
- Регулятор для индуктивной нагрузки
- РН на 2 транзисторах
- Китайский РН на 220 вольт
- Регулятор мощности 220 В – схема на симисторе
- Регулятор мощности на симисторе BTA12-600
Память |
Микроконтроллеры |
Индикаторы |
Датчики |
Компоненты АСУ и ТП |
Все источники питания » |
Все дискреты » |
Все компоненты связи » |
Посмотреть все фирмы –>> |
Посмотреть все компоненты –>> |
Выставки, семинары, мероприятия
- 18.03.2018 21:43 РобоСектор-2018 вновь собирает друзей! РобоСектор – это площадка для диалога и обмена опытом и технологиями между участниками профессионального сообщества. Практическое мероприятие, дающее ответ на вопрос “Какие технологии или компоненты использовать для реализации конкретной прикладной задачи
- 12.03.2018 22:00 Золотой Чип пройдет при поддержке Министерства обороны Российской Федерации Премия «Золотой Чип» проводится с 2004 года. Итоги подводятся на международной выставке по электронике, компонентам, оборудованию, технологиям «ChipEXPO»
- 29.01.2018 15:44 Выставка-форум «Передовые Технологии Автоматизации. ПТА – Санкт-Петербург 2018» приглашает участников Санкт-Петербург, 05 – 07 июня 2017 г.
- 13.12.2017 20:02 «Электроника-Транспорт 2018»: только лучшие IT решения для пассажирского транспорта! 12-я международная специализированная выставка информационных технологий и электроники для пассажирского транспорта и транспортной инфраструктуры.
- 23.11.2017 20:40 Выступление спикера IBM, представителя Kawasaki и разработчика FEDOR: подробная программа Robotics Expo 2017 25–26 ноября на пятой международной выставке-конференции Robotics Expo представители IBM, Kawasaki, НПО «Андроидная техника» и других ведущих робототехнических компаний обсудят ключевые аспекты развития отрасли
Новости производителей
- 21.02.2018 10:40 Приемопередатчики интерфейса CAN с единым напряжением питания 3.3 В и защитой от перегрузок на шине до ±36 В Устройства также отличаются высокой пропускной способностью, функцией регулировки скорости нарастания выходного сигнала и малопотребляющим режимом ожидания Производитель: Exar Новые компоненты –> Группа компонентов: CAN
- 21.02.2018 10:22 Миниатюрный модуль зарядного устройства малой мощности для работы в системах накопления энергии из окружающей среды Устройство, выполненное в виде готового решения с минимальным числом внешних компонентов, отличается низкой стоимостью, высокой эффективностью и чрезвычайно компактными размерами Производитель: Silvertel Новые компоненты –> Группа компонентов: PoE-модули питания
- 21.02.2018 10:08 Низковольтный модуль драйвера светодиодов Ag201 с программируемой величиной выходного тока Благодаря возможности пользовательской установки максимального тока нагрузки, драйвер способен управлять различными типами светодиодов Производитель: Silvertel Новые компоненты –> Группа компонентов: Контроллеры Дисплеев
- 21.02.2018 09:53 Коммутаторы Ethernet BCM56980 серий StrataXGS® Tomahawk® 3 с пропускной способностью 12.8 Tбит/с Семейство StrataXGS Tomahawk 3 с поддержкой до 32 портов стандарта 400GbE может использоваться для построения высокомасштабируемых распределительных, объединительных и масштабирующих коммутаторов Производитель: Broadcom Limited Новые компоненты –> Группа компонентов: Ethernet
- 21.02.2018 09:44 Компактный DC/DC преобразователь в исполнении µModule® с током нагрузки 20 А в 1-канальной и 10 А на канал в 2-канальной конфигурации, ИС предназначена для каскадов питания ПЛИС, графических процессоров, специализированных микросхем и системного энергообеспечения Производитель: Analog Devices Новые компоненты –> Группа компонентов: Понижающие преобразователи напряжения
Новости поставщиков
- 28.11.2017 06:05 Скидки от 50% на ПО для проектирования печатных плат от Mentor Graphics ЗАО «Нанософт», официальный дистрибьютор компании Mentor Graphics, объявляет о старте специального предложения на приобретение программных решений для разработки электроники – PADS Производитель: Новости поставщиков –> Группа компонентов:
- 24.09.2016 08:15 Компания АВИТОН – официальный представитель Regatron (Швейцария) Компания Regatron осуществляет разработку и производство источников питания Производитель: Новости поставщиков –> Группа компонентов: Источники питания
- 15.09.2016 08:42 Arrow Electronics проводит в жизнь технологии краудфандинга с Indiegogo Их деятельность направлена на оптимизацию цепочки краудфандинг – продукт и должна ускорить темпы внедрения инноваций для технологии интернета вещей (IoT) Производитель: Arrow Electronics Russia Новости поставщиков –> Группа компонентов:
- 08.08.2016 08:41 «Новости Электроники + Светотехника» №01/2016: LED-освещение для промышленных объектов Производитель: Новости поставщиков –> Группа компонентов:
- 22.07.2016 08:31 Прошивка Serial Extender упрощает работу с модулями MBee Два радиомодуля MBee-868 с прошивкой Serial Extender позволяют заменить проводное последовательное соединение между двумя любыми устройствами с интерфейсом UART Производитель: Новости поставщиков –> Группа компонентов: Модули
Новости технологий
- 29.07.2015 10:24 Компания Altera присоединилась с проекту OPNFV с целью привнести преимущества ПЛИС FPGA в технологию виртуализации сетевых функций Решения на базе ПЛИС FPGA и Систем-на-Кристалле уже ускоряют работу серверов дата-центров в области предоставления поисковых сервисов и свёрточных нейронных сетей Производитель: Altera Новости технологий –> Группа компонентов: FPGA
- 29.07.2015 10:14 Пример разработки хранилища данных на базе ПЛИС FPGA удваивает срок службы NAND FLASH памяти Архитектура ПЛИС FPGA со встроенным процессорным ядром предлагает инновационный метод создания устройств хранения данных для облачных приложений и высокопроизводительных вычислительных систем Производитель: Altera Новости технологий –> Группа компонентов: SoC FPGA
- 08.07.2015 13:41 Компания Pentair предлагает новые трехмерные чертежи и услуги для конструкторов на портале Traceparts Чертежи Schroff на портале Traceparts Производитель: Schroff Новости технологий –> Группа компонентов:
- 13.04.2015 14:37 Cypress Semiconductor: CySmart™ — приложения для устройств Bluetooth® с низким энергопотрбелением (BLE) Производитель: Cypress Новости технологий –> Группа компонентов: Bluetooth
- 28.01.2015 09:43 Audi выбрала Системы-на-Кристалле компании Altera для применения в автомобилях с функцией «Автопилот» Altera и TTTech Deliver Industry, лидер в области разработки продвинутых систем помощи водителю (ADAS), приступили к разработке систем управления автопилотируемых автомобилей для компании Audi Производитель: Altera Новости технологий –> Группа компонентов: Программируемая Логика
Подпишись на новости! |
Статьи о разном:
Безопасность Дом Транспорт Интернет Офис Производство Связь Компьютер Медтехника Досуг Строительство Бизнес Свет
Содержание
Bta 16 600v схема включения
Сегодня я вам расскажу об очень полезной схеме, которая пригодится как в лаборатории, так и в хозяйстве. Устройство, о котором пойдет речь, называется симисторный регулятор мощности. Регулятор можно применить для плавной регулировки яркостью освещения, температуры паяльника, оборотами электродвигателя (переменного тока). Мой вариант применения регулятора интересней, я плавно регулирую температуру нагрева тэна мощностью 1кВт в самогонном аппарате. Да-да, я занимаюсь этим благородным делом.
Схема имеет минимум элементов и заводится сразу. Мощность нагрузки для симисторного регулятора определяется током симистора. Симистор BTA12-600 рассчитан на ток 12 Ампер и напряжение 600 Вольт. Симистор нужно выбирать с запасом по току, я выбрал двукратный запас. Например, симистор BTA12-600 с оптимальным охлаждением может в штатном режиме пропускать через себя ток 8 Ампер. Если нужен регулятор мощнее, используйте симистор BTA16-600 или BTA24-600.
Работа схемы описана в статье «Диммер своими руками».
Рабочая температура кристалла симистора от -40 до +125 градусов Цельсия. Необходимо сделать хорошее охлаждение. У меня нагрузка 1кВт, соответственно ток нагрузки около 5А, радиатор площадью 200см кв. греется от 85 до90 градусов Цельсия при длительной работе (до 6ч). Планирую увеличить рабочую площадь радиатора, чтобы повысить надежность устройства.
Симистор имеет управляющий вывод и два вывода, через которые проходит ток нагрузки. Эти два вывода можно менять местами ничего страшного не случиться.
Для безопасности (чтобы не щелкнуло током), симистор необходимо устанавливать на радиатор через диэлектрическую прокладку (полимерную или слюдяную) и диэлектрическую втулку.
Компоненты.
Резистор 4.7кОм мощностью 0,25Вт. Динистор с маркировкой DB3 , полярности не имеет, впаивать любой стороной. Конденсатор пленочный на 100нФ 400В полярности не имеет.
Светодиод любого цвета диаметром 3мм, обратное напряжение 5В, ток 25мА. Короче любой светодиод 3мм. Светодиод дает индикацию нагрузки, не пугайтесь, если при первом включении (естественно без нагрузки) он светиться не будет.
Первое включение необходимо производить кратковременно без нагрузки. Если все нормально, никакие элементы не греются, ничего не щелкнуло, тогда включаем без нагрузки на 15 секунд. Далее цепляем лампу напряжением 220В и мощностью 60-200Вт, крутим ручку переменного резистора и наслаждаемся работой.
Для защиты я установил в разрыв сетевого провода (220В) предохранитель на 12А.
Собранный нами регулятор мощности на симисторе BTA12-600 можно применить для регулировки температуры паяльника (регулируя мощность), тем самым получив паяльную станцию для вашей мастерской.
Печатная плата регулятора мощности на симисторе BTA12-600 СКАЧАТЬ
Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.
Что такое симистор?
Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.
Читайте также: Паз 32053 двигатель троит
Описание принципа работы и устройства
Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .
Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение
Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).
Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.
Рис. 2. Структурная схема симистора
Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене – р1-n2-p2-n3.
Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.
ВАХ симистора
Обозначение:
- А – закрытое состояние.
- В – открытое состояние.
- UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
- URRM (UОБ) – максимальный уровень обратного напряжения.
- IDRM (IПР) – допустимый уровень тока прямого включения
- IRRM (IОБ) – допустимый уровень тока обратного включения.
- IН (IУД) – значения тока удержания.
Особенности
Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:
- относительно невысокая стоимость приборов;
- длительный срок эксплуатации;
- отсутствие механики (то есть подвижных контактов, которые являются источниками помех).
В число недостатков приборов входят следующие особенности:
- Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.
Симистор с креплением под радиатор
- Устройства подвержены влиянию переходных процессов, шумов и помех;
- Не поддерживаются высокие частоты переключения.
По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.
RC-цепочка для защиты симистора от помех
Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.
Применение
Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:
- зарядные устройства для автомобильных АКБ;
- бытовое компрессорное оборудования;
- различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
- ручные электрические инструменты (шуроповерт, перфоратор и т.д.).
Читайте также: Запуск двигателя кнопкой для киа сид
И это далеко не полный перечень.
Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.
Как проверить работоспособность симистора?
В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:
- Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
- Собрать специальную схему.
Алгоритм проверки омметром:
- Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
- Устанавливаем кратность на омметре х1.
- Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
- Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
- Меняем полярность и повторяем тест с пункта 3 по 4.
Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.
Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).
Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.
Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.
Схема простого тестера для симисторов
Обозначения:
- Резистор R1 – 51 Ом.
- Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
- Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
- Лампочка HL – 12 В, 0,5А.
Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.
Алгоритм проверки:
- Устанавливаем переключатели в исходное положение (соответствующее схеме).
- Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
- Жмем SB2, лампа гаснет (устройство закрылось).
- Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
- Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.
Читайте также: Расход масла в двигателе kia ceed
Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.
Схема для проверки тиристоров и симисторов
Обозначения:
- Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
- Емкости: С1 и С2 – 100 мкФ х 10 В.
- Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.
В качестве источника питания используется батарейка на 9V, по типу Кроны.
Тестирование тринисторов производится следующим образом:
- Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
- Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
- Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
- Кратковременно жмем S2, светодиоды не должны загораться.
Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.
Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:
- Выполняем пункты 1-4.
- Нажимаем кнопку S1- загорается светодиод VD
То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).
Схема управления мощностью паяльника
В завершении приведем простую схему, позволяющую управлять мощностью паяльника.
Простой регулятор мощности для паяльника
Обозначения:
- Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
- Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 – 0,05 мкФ.
- Симметричный тринистор BTA41-600.
Приведенная схема настолько простая, что не требует настройки.
Теперь рассмотрим более изящный вариант управления мощностью паяльника.
Схема управления мощностью на базе фазового регулятора
Обозначения:
- Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 – 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
- Емкости: С1 и С2 – 1 мкФ х 16 В.
- Симметричный тринистор: VS1 – ВТ136.
- Микросхема фазового регулятора DA1 – KP1182 ПМ1.
Настройка схемы сводится к подбору следующих сопротивлений:
- R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
- R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),
Симистор TRIAC BTA16-600B (симметричный тиристор) в корпусе TO-220.
Характеристики симистора BTA16-600B:
- Максимальное обратное напряжение Uобр: 600 В
- Макс. повторяющееся импульсное напр. в закрытом состоянии Uзс.повт.макс: 600 В
- Макс. среднее за период значение тока в открытом состоянии Iос.ср.макс: 16 А
- Макс. кратковременный импульсный ток в открытом состоянии Iкр.макс: 120 А
- Макс. напр. в открытом состоянии Uос.макс : 1.5 В
- Наименьший постоянный ток управления, необходимый для включения тиристора Iу.от.мин: 0.05 А
- Отпирающее напряжение управления,соответствующее минимальному постоянному отпирающему току Uу: 1.3 В
- Критическая скорость нарастания напряжения в закрытом состоянии dUзс./dt: 5 ,В/мкс
- Критическая скорость нарастания тока в открытом состоянии dI/dt,: 5 А/мкс
- Время включения tвкл. 2 мкс
- Рабочая температура: -40…125 С
Описание симистора BTA16-600 (Datasheet PDF): скачать
Примеры схем регуляторов мощности (диммеров) на симисторе BTA16-600B
Нагрузка до 2 кВт 220 Вольт переменного тока
|
Простой регулятор мощности на 220 Вольт из 5 деталей.
Итак, для этого нам потребуется симистор, у меня он был уже прикрученный к радиатору. Симистор у меня был BТА41-600, можно взять и другой, под свои нужды.
- Резистор 560 ом
- Динистор, вытащил с энергосберегающей лампы.
- Конденсатор 0.1 мкф 400 вольт
- Переменный резистор на 470 кОм, можно взять поменьше.
Читайте также: Подогрев ступеней крыльца на улице: кабель, маты, трубопровод
Вот схема данного устройства, она довольно маленькая ?
Схема паяется навесным монтажом, так как делать под неё плату не вижу смысла. Вот приблизительно так…
Кстати полярность динистора не имеет значения, как поставите, так и будет, и конденсатор тоже.
Ну вот в принципе и всё, если правильно спаяли схему, то она начинает работать сразу, без каких-либо настроек.
Теперь осталось протестировать, схема подключается последовательно к нагрузке.
Источник
Варианты схем регулятора
Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.
Рисунок 2. Схема простого регулятора мощности на симисторе с питанием от 220 В
Читайте также: Схема работы устройства плавного пуска, его назначение и конструкция
Обозначения:
- Резисторы: R1- 470 кОм , R2 – 10 кОм,
- Конденсатор С1 – 0,1 мкФ х 400 В.
- Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
- Динистор DN1 – DB3.
- Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.
Как избежать 3 частых ошибок при работе с симистором.
- Буква, после кодового обозначения симистора говорит о его предельном рабочем напряжении: А – 100В, Б – 200В, В – 300В, Г – 400В. Поэтому не стоит брать прибор с буквой А и Б для регулировки 0-220 вольт — такой симистор выйдет из строя.
- Симистор как и любой другой полупроводниковый прибор сильно нагревается при работе, следует рассмотреть вариант установки радиатора или активной системы охлаждения.
- При использовании симистора в цепях нагрузок с большим потреблением тока, необходимо четко подбирать прибор под заявленную цель. Например, люстра, в которой установлено 5 лампочек по 100 ватт каждая будет потреблять суммарно ток величиной 2 ампера. Выбирая по каталогу необходимо смотреть на максимальный рабочий ток прибора. Так симистор МАС97А6 рассчитан всего на 0,4 ампера и не выдержит такой нагрузки, а МАС228А8 способен пропустить до 8 А и подойдет для этой нагрузки.
Регулятор для индуктивной нагрузки
Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.
Существует два варианта решения проблемы:
- Подача на управляющий электрод серии однотипных импульсов.
- Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.
Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.
Схема регулятора мощности для индуктивной нагрузки
Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.
Осциллограммы входного (А), управляющего (В) и выходного сигнала (С) регулятора мощности
РН на 2 транзисторах
Данный вид применяется в схемах особо мощных регуляторов. В этом случае ток на нагрузку также передается через симистор, но управление ключевым выводом происходит через каскад транзисторов. Это реализуется так: переменным резистором регулируется ток, который поступает на базу первого маломощного транзистора, а тот через коллектор-эмиторный переход управляет базой второго мощного транзистора и уже он открывает и закрывает симистор. Это реализует принцип очень плавного управления огромными токами на нагрузке.
СНиП 3.05.06-85
Ответы на 4 самых частых вопроса по регуляторам:
- Какое допустимое отклонение выходного напряжения? Для заводских приборов крупных фирм, отклонение не будет превышать +-5%
- От чего зависит мощность регулятора? Выходная мощность напрямую зависит от источника питания и от симистора, который коммутирует цепь.
- Для чего нужны регуляторы 0-5 вольт? Эти приборы чаще всего используют для питания микросхем и различных монтажных плат.
- Зачем нужен бытовой регулятор 0-220 вольт? Они применяются для плавного включения и выключения бытовых электроприборов.
Китайский РН на 220 вольт
В наше время товары из Китая стали довольно популярной темой, от общей тенденции не отстают и китайские регуляторы напряжения. Рассмотрим самые популярные китайские модели и сравним их основные характеристики.
Название | Мощность | Напряжение стабилизации | Цена | Вес | Стоимость одного ватта |
Module ME | 4000 Вт | 0-220 В | 6.68$ | 167 г | 0.167$ |
SCR Регулятор | 10 000 Вт | 0-220 В | 12.42$ | 254 г | 0.124$ |
SCR Регулятор II | 5 000 Вт | 0-220 В | 9.76$ | 187 г | 0.195$ |
WayGat 4 | 4 000 Вт | 0-220 В | 4.68$ | 122 г | 0.097$ |
Cnikesin | 6 000 Вт | 0-220 В | 11.07$ | 155 г | 0.185$ |
Great Wall | 2 000 Вт | 0-220 В | 1.59$ | 87 г | 0.080$ |
Регулятор мощности 220 В – схема на симисторе
Как сделать универсальный регулятор мощности 220 В на симисторе своими руками? Схема, список радиоэлементов, видео. Преимущества и принцип работы симисторных регуляторов.
- Схема
- Видео о сборке
Регуляторы мощности используются для предотвращения нежелательных последствий после проблем с электричеством. Не секрет, что резкие перепады, а также чрезмерно пониженное или повышенное напряжение пагубно влияют на бытовые приборы. Чтобы не допустить поломки, необходимо пользоваться регулятором напряжения, который защитит от короткого замыкания и различных негативных факторов электронные приборы.
Существуют транзисторные регуляторы напряжения, тиристорные, механические (регулировка напряжения осуществляется при помощи механического бегунка с графитовым стержнем на конце). Но самым распространенным является симисторный регулятор напряжения. Основой этого прибора являются симисторы, которые позволяют резко среагировать на скачки напряжения и сгладить их.
Читайте также: Инфракрасный обогреватель потолочный: особенности выбора, обзор моделей и цен
- Смотрите также схему простого преобразователя напряжения
Симистор представляет собой элемент, который содержит пять p-n переходов. Этот радиоэлемент может пропускать ток как в прямом направлении, так и в обратном. Он есть в разных бытовых приборах, начиная от фенов и настольных ламп и заканчивая паяльниками, где необходима плавная регулировка.
Принцип работы симистора довольно прост. Это своего рода электронный ключ, который то закрывает двери, то открывает их с заданной частотой. При открытии P-N перехода симистора он пропускает небольшую часть полуволны, вследствие чего потребитель получает только часть номинальной мощности. То есть чем больше открывается P-N переход, тем больше мощности получает потребитель.
К достоинствам симисторов можно отнести:
Отсутствие искрообразования из-за то, что нет механической составляющей.
- Возможность коммутации в моменты нулевого сетевого тока, что снижает количество помех и обеспечивает высокую точность работы схемы.
Регулятор мощности на симисторе BTA12-600
Сегодня я вам расскажу об очень полезной схеме, которая пригодится как в лаборатории, так и в хозяйстве. Устройство, о котором пойдет речь, называется симисторный регулятор мощности. Регулятор можно применить для плавной регулировки яркостью освещения, температуры паяльника, оборотами электродвигателя (переменного тока). Мой вариант применения регулятора интересней, я плавно регулирую температуру нагрева тэна мощностью 1кВт в самогонном аппарате. Да-да, я занимаюсь этим благородным делом.
Схема имеет минимум элементов и заводится сразу. Мощность нагрузки для симисторного регулятора определяется током симистора. Симистор BTA12-600 рассчитан на ток 12 Ампер и напряжение 600 Вольт. Симистор нужно выбирать с запасом по току, я выбрал двукратный запас. Например, симистор BTA12-600 с оптимальным охлаждением может в штатном режиме пропускать через себя ток 8 Ампер. Если нужен регулятор мощнее, используйте симистор BTA16-600 или BTA24-600.
Работа схемы описана в статье «Диммер своими руками».
Рабочая температура кристалла симистора от -40 до +125 градусов Цельсия. Необходимо сделать хорошее охлаждение. У меня нагрузка 1кВт, соответственно ток нагрузки около 5А, радиатор площадью 200см кв. греется от 85 до90 градусов Цельсия при длительной работе (до 6ч). Планирую увеличить рабочую площадь радиатора, чтобы повысить надежность устройства.
Симистор имеет управляющий вывод и два вывода, через которые проходит ток нагрузки. Эти два вывода можно менять местами ничего страшного не случиться.
Для безопасности (чтобы не щелкнуло током), симистор необходимо устанавливать на радиатор через диэлектрическую прокладку (полимерную или слюдяную) и диэлектрическую втулку.
Компоненты.
Резистор 4.7кОм мощностью 0,25Вт. Динистор с маркировкой DB3 , полярности не имеет, впаивать любой стороной. Конденсатор пленочный на 100нФ 400В полярности не имеет.
Светодиод любого цвета диаметром 3мм, обратное напряжение 5В, ток 25мА. Короче любой светодиод 3мм. Светодиод дает индикацию нагрузки, не пугайтесь, если при первом включении (естественно без нагрузки) он светиться не будет.
Первое включение необходимо производить кратковременно без нагрузки. Если все нормально, никакие элементы не греются, ничего не щелкнуло, тогда включаем без нагрузки на 15 секунд. Далее цепляем лампу напряжением 220В и мощностью 60-200Вт, крутим ручку переменного резистора и наслаждаемся работой.
Для защиты я установил в разрыв сетевого провода (220В) предохранитель на 12А.
Собранный нами регулятор мощности на симисторе BTA12-600 можно применить для регулировки температуры паяльника (регулируя мощность), тем самым получив паяльную станцию для вашей мастерской.
Читайте также: Сколько в 1 ампере миллиампер часов
Печатная плата регулятора мощности на симисторе BTA12-600
Даташит на BTA12-600
3 шт. из магазина г.Минск 367 шт. со склада г.Москва от 15 шт. — 4.83 BYN Номенклатурный номер: 9000035623 Артикул: BTA24-600CWRG Страна происхождения: КИТАЙ Производитель: ST Microelectronics
Описание
TRIAC, 25A to 40A, STMicroelectronics
Технические параметры
Максимальное обратное напряжение Uобр.,В | 600 |
Макс. повторяющееся импульсное напр. в закрытом состоянии Uзс.повт.макс.,В | 600 |
Макс. среднее за период значение тока в открытом состоянии Iос.ср.макс.,А | 24 |
Макс. кратковременный импульсный ток в открытом состоянии Iкр.макс.,А | 240 |
Макс. напр. в открытом состоянии Uос.макс.,В | 1.5 |
Наименьший постоянный ток управления, необходимый для включения тиристора Iу.от.мин.,А | 0.05 |
Отпирающее напряжение управления,соответствующее минимальному постоянному отпирающему току Uу.от.,В | 1.5 |
Критическая скорость нарастания напряжения в закрытом состоянии dUзс./dt,В/мкс | 1000 |
Критическая скорость нарастания тока в открытом состоянии dI/dt,А/мкс | 22 |
Время включения tвкл.,мкс | 2 |
Рабочая температура,С | -40…125 |
Корпус | to220ab |
Конфигурация | single |
Тип симистора | alternistor-snubberless |
Максимальное напряжение в закрытом состоянии, В | 600 |
Максимально допустимы ток в открытом состоянии, А | 25 |
Отпирающее постоянное напряжение управления, В | 1.3 |
Ударный ток в открытом состоянии, А | 250 |
Отпирающий постоянный ток управления, мА | 35 |
Ток удержания, мА | 50 |
Корпус | TO-220AB |
Вес, г | 2.5 |
Гарантийный срок
6 месяцев
Техническая документация
BTA24, BTB24, BTA25, BTA26, BTB26, T25 pdf, 132 КБ
Дополнительная информация
Datasheet BTA24-600CWRG
Сроки доставки
Цена и наличие в магазинах
С этим товаром покупают 12-0201 (FD-7058), Оловоотсос для припоя, пластик 8.70 BYN
2-155, Пинцет для захвата мелких деталей 56 BYN
ПОС 40 Тр d=1.0мм 1 м спираль, Припой 7.50 BYN Мы рекомендуем
Оптопары
Транзисторы биполярные (BJTs)
Тиристоры и Триаки (симисторы)
Устройства защиты Резонаторы и фильтры
ли со статьей или есть что добавить?