Как подключить регулятор напряжения 220в схема подключения

Память

Микроконтроллеры

Индикаторы

Датчики

Компоненты АСУ и ТП

Все источники питания »

Все дискреты »

Все компоненты связи »

Посмотреть все фирмы —>>

Посмотреть все компоненты —>>  

Выставки, семинары, мероприятия

  • 18.03.2018 21:43 РобоСектор-2018 вновь собирает друзей! РобоСектор – это площадка для диалога и обмена опытом и технологиями между участниками профессионального сообщества. Практическое мероприятие, дающее ответ на вопрос «Какие технологии или компоненты использовать для реализации конкретной прикладной задачи
  • 12.03.2018 22:00 Золотой Чип пройдет при поддержке Министерства обороны Российской Федерации Премия «Золотой Чип» проводится с 2004 года. Итоги подводятся на международной выставке по электронике, компонентам, оборудованию, технологиям «ChipEXPO»
  • 29.01.2018 15:44 Выставка-форум «Передовые Технологии Автоматизации. ПТА — Санкт-Петербург 2018» приглашает участников Санкт-Петербург, 05 — 07 июня 2017 г.
  • 13.12.2017 20:02 «Электроника-Транспорт 2018»: только лучшие IT решения для пассажирского транспорта! 12-я международная специализированная выставка информационных технологий и электроники для пассажирского транспорта и транспортной инфраструктуры.
  • 23.11.2017 20:40 Выступление спикера IBM, представителя Kawasaki и разработчика FEDOR: подробная программа Robotics Expo 2017 25–26 ноября на пятой международной выставке-конференции Robotics Expo представители IBM, Kawasaki, НПО «Андроидная техника» и других ведущих робототехнических компаний обсудят ключевые аспекты развития отрасли

Новости производителей

  • 21.02.2018 10:40 Приемопередатчики интерфейса CAN с единым напряжением питания 3.3 В и защитой от перегрузок на шине до ±36 В Устройства также отличаются высокой пропускной способностью, функцией регулировки скорости нарастания выходного сигнала и малопотребляющим режимом ожидания Производитель: Exar Новые компоненты —> Группа компонентов: CAN
  • 21.02.2018 10:22 Миниатюрный модуль зарядного устройства малой мощности для работы в системах накопления энергии из окружающей среды Устройство, выполненное в виде готового решения с минимальным числом внешних компонентов, отличается низкой стоимостью, высокой эффективностью и чрезвычайно компактными размерами Производитель: Silvertel Новые компоненты —> Группа компонентов: PoE-модули питания
  • 21.02.2018 10:08 Низковольтный модуль драйвера светодиодов Ag201 с программируемой величиной выходного тока Благодаря возможности пользовательской установки максимального тока нагрузки, драйвер способен управлять различными типами светодиодов Производитель: Silvertel Новые компоненты —> Группа компонентов: Контроллеры Дисплеев
  • 21.02.2018 09:53 Коммутаторы Ethernet BCM56980 серий StrataXGS® Tomahawk® 3 с пропускной способностью 12.8 Tбит/с Семейство StrataXGS Tomahawk 3 с поддержкой до 32 портов стандарта 400GbE может использоваться для построения высокомасштабируемых распределительных, объединительных и масштабирующих коммутаторов Производитель: Broadcom Limited Новые компоненты —> Группа компонентов: Ethernet
  • 21.02.2018 09:44 Компактный DC/DC преобразователь в исполнении µModule® с током нагрузки 20 А в 1-канальной и 10 А на канал в 2-канальной конфигурации, ИС предназначена для каскадов питания ПЛИС, графических процессоров, специализированных микросхем и системного энергообеспечения Производитель: Analog Devices Новые компоненты —> Группа компонентов: Понижающие преобразователи напряжения

Новости поставщиков

  • 28.11.2017 06:05 Скидки от 50% на ПО для проектирования печатных плат от Mentor Graphics ЗАО «Нанософт», официальный дистрибьютор компании Mentor Graphics, объявляет о старте специального предложения на приобретение программных решений для разработки электроники – PADS Производитель: Новости поставщиков —> Группа компонентов:
  • 24.09.2016 08:15 Компания АВИТОН — официальный представитель Regatron (Швейцария) Компания Regatron осуществляет разработку и производство источников питания Производитель: Новости поставщиков —> Группа компонентов: Источники питания
  • 15.09.2016 08:42 Arrow Electronics проводит в жизнь технологии краудфандинга с Indiegogo Их деятельность направлена на оптимизацию цепочки краудфандинг — продукт и должна ускорить темпы внедрения инноваций для технологии интернета вещей (IoT) Производитель: Arrow Electronics Russia Новости поставщиков —> Группа компонентов:
  • 08.08.2016 08:41 «Новости Электроники + Светотехника» №01/2016: LED-освещение для промышленных объектов Производитель: Новости поставщиков —> Группа компонентов:
  • 22.07.2016 08:31 Прошивка Serial Extender упрощает работу с модулями MBee Два радиомодуля MBee-868 с прошивкой Serial Extender позволяют заменить проводное последовательное соединение между двумя любыми устройствами с интерфейсом UART Производитель: Новости поставщиков —> Группа компонентов: Модули

Новости технологий

  • 29.07.2015 10:24 Компания Altera присоединилась с проекту OPNFV с целью привнести преимущества ПЛИС FPGA в технологию виртуализации сетевых функций Решения на базе ПЛИС FPGA и Систем-на-Кристалле уже ускоряют работу серверов дата-центров в области предоставления поисковых сервисов и свёрточных нейронных сетей Производитель: Altera Новости технологий —> Группа компонентов: FPGA
  • 29.07.2015 10:14 Пример разработки хранилища данных на базе ПЛИС FPGA удваивает срок службы NAND FLASH памяти Архитектура ПЛИС FPGA со встроенным процессорным ядром предлагает инновационный метод создания устройств хранения данных для облачных приложений и высокопроизводительных вычислительных систем Производитель: Altera Новости технологий —> Группа компонентов: SoC FPGA
  • 08.07.2015 13:41 Компания Pentair предлагает новые трехмерные чертежи и услуги для конструкторов на портале Traceparts Чертежи Schroff на портале Traceparts Производитель: Schroff Новости технологий —> Группа компонентов:
  • 13.04.2015 14:37 Cypress Semiconductor: CySmart™ — приложения для устройств Bluetooth® с низким энергопотрбелением (BLE) Производитель: Cypress Новости технологий —> Группа компонентов: Bluetooth
  • 28.01.2015 09:43 Audi выбрала Системы-на-Кристалле компании Altera для применения в автомобилях с функцией «Автопилот» Altera и TTTech Deliver Industry, лидер в области разработки продвинутых систем помощи водителю (ADAS), приступили к разработке систем управления автопилотируемых автомобилей для компании Audi Производитель: Altera Новости технологий —> Группа компонентов: Программируемая Логика

Подпишись на новости!

  Статьи о разном:

Безопасность   Дом   Транспорт Интернет   Офис   Производство Связь   Компьютер   Медтехника Досуг   Строительство   Бизнес Свет

Существенный недостаток тиристоров заключается в том, что это однополупериодные элементы, соответственно, в цепях переменного тока они работают с половинной мощностью. Избавиться от этого недостатка можно используя схему встречно-параллельного включения двух однотипных устройств или установив симистор. Давайте разберемся, что представляет собой этот полупроводниковый элемент, принцип его функционирования, особенности, а также сферу применения и способы проверки.

Что такое симистор?

Это один из видов тиристоров, отличающийся от базового типа большим числом p-n переходов, и как следствие этого, принципом работы (он будет описан ниже). Характерно, что в элементной базе некоторых стран данный тип считается самостоятельным полупроводниковым устройством. Эта незначительная путаница возникла вследствие регистрации двух патентов, на одно и то же изобретение.

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

image
Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Это и дало название полупроводниковому прибору, как производную от словосочетания «симметричные тиристоры» и отразилось на его УГО. Обратим внимание на обозначения выводов, поскольку ток может проводиться в оба направления, обозначение силовых выводов как Анод и Катод не имеет смысла, потому их принято обозначать, как «Т1» и «Т2» (возможны варианты ТЕ1 и ТЕ2 или А1 и А2). Управляющий электрод, как правило, обозначается «G» (от английского gate).

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

image
Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене — р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) — допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

  • Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.
Симистор с креплением под радиатор
  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Как проверить работоспособность симистора?

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

Схема управления мощностью паяльника

В завершении приведем простую схему, позволяющую управлять мощностью паяльника.

Простой регулятор мощности для паяльника

Обозначения:

  • Резисторы: R1 – 100 Ом, R2 – 3,3 кОм, R3 – 20 кОм, R4 – 1 Мом.
  • Емкости: С1 – 0,1 мкФ х 400В, С2 и С3 — 0,05 мкФ.
  • Симметричный тринистор BTA41-600.

Приведенная схема настолько простая, что не требует настройки.

Теперь рассмотрим более изящный вариант управления мощностью паяльника.

Схема управления мощностью на базе фазового регулятора

Обозначения:

  • Резисторы: R1 – 680 Ом, R2 – 1,4 кОм, R3 — 1,2 кОм, R4 и R5 – 20 кОм (сдвоенное переменное сопротивление).
  • Емкости: С1 и С2 – 1 мкФ х 16 В.
  • Симметричный тринистор: VS1 – ВТ136.
  • Микросхема фазового регулятора DA1 – KP1182 ПМ1.

Настройка схемы сводится к подбору следующих сопротивлений:

  • R2 – с его помощью устанавливаем необходимую для работы минимальную температуру паяльника.
  • R3 – номинал резистора позволяет задать температуру паяльника, когда он находится на подставке (срабатывает переключатель SA1),

Свойства

  • Мощные симисторы
  • Низкое тепловое сопротивление
  • Высокая коммутирующая способность
  • Сертифицированы по стандарту UL1557
  • Корпусы соответствуют директиве RoHS (2002/95/EC)

Применение

  • В качестве ключа в релейных схемах, для регулировки нагрева, в цепях запуска асинхронных электродвигателей
  • Для управления фазой в димерах света, в регуляторах частоты вращения коллекторных двигателей

Описание

Доступны в мощных корпусах. Симисторы серии BTA / BTB40-41 подходят для коммутации переменного тока общего назначения. Серия BTA снабжена изолированным язычком (номинальное среднеквадратичное напряжение пробоя 2500 В).

Типы корпусов (A1, A2 — аноды, G — управляющий электрод)
Общие характеристики
Обозначение Параметр BTA40(1) BTA41(1) BTB41 Ед. изм
IT(RMS) Действующий ток в открытом состоянии 40 41 41 А
VDRM/VRRM Повторяющееся импульсное напряжение в закрытом состоянии 600 и 800 600 и 800 600 и 800 В
!gt Отпирающий постоянный ток управления 50 50 50 мА
Абсолютные максимальные значения 
Обозначение Параметр Значение Ед. изм.
IT(RMS) Действующий ток в открытом состоянии (для полной синусоиды) TOP3 Tc = 95 °C 40 А
RD91 / TOP ins. Tc = 80 °C
ITSM Ударный ток в открытом состоянии (для полного цикла, Tj initial = 25 °C) F = 50 Гц t = 20 мс 400 A
F = 60 Гц t = 16.7 мс 420
l2t l2t  Значение плавления симистора tp = 10 мс 1000 A2с
dl/dt Критическая скорость нарастания тока в открытом состоянии lG = 2 ·lGT , tr < 100 нс F = 120 Гц Tj = 125 °C 50 A/мкс
VDSM/VRSM Неповторяющееся импульсное напряжение в закрытом состоянии tp = 10 мс Tj = 25 °C VDSM/VRSM+ 100 В
IGM Импульсный ток управления tp = 20 мкс Tj = 125 °C 8 A
PG(AV) Средняя рассеиваемая мощность управления Tj = 125 °C 1 Вт
Tstg  Температура хранения -40…+ 150  °C
Tj Диапазон рабочих температур -40…+ 125 °C
Электрические характеристики (Tj = 25 °C)
Обозначение Параметр Значение Ед. изм.
IGT(1) Отпирающий постоянный ток управления VD = 12 В, RL = 33 Ом I- II — III MAX. 50 мА
IV 100
VGT Постоянное отпирающее напряжение управления все квадранты MAX. 1,3 В
VGD Неотпирающее постоянное напряжение управления VD = VDRM RL = 3.3 кОм Tj = 125 °C все квадранты MIN. 0,2 А
IH (2) Ток удержания lj = 500 mA MAX. 80 мА
IL Ток включения тиристора IG = 1.2 IGT I-III-IV MAX. 70 мА
II 160
dV/dt(2) Скорость нарастания напряжения VD = 67% VDRM  в открытом состоянии, Tj = 125 °C MIN. 500 В/мкс
(dV/dt)c(2) Критическая скорость нарастания напряжения (dl/dt)c = 20 А/мс, Tj = 125 °C MIN. 10 В/мкс
  1. Минимум IGT гарантируется на уровне 5% от IGT max.
  2. Для обеих полярностей от A2 к A1.
Статические характеристики 
Обозначение Условия Значение Ед. изм.
VT(1) Напряжение в открытом состоянии ITM = 60 A, tp = 380 мкс Tj = 25 °C MAX. 1,55 В
Vt0(2) Пороговое напряжение Tj = 125 °C MAX. 0,85 В
Rd(2) Динамическое сопротивление Tj = 125 °C MAX. 10 мОм
IDRM Повторяющийся импульсный ток в закрытом состоянии VDRM = VRRM T= 25 °C MAX. 5 мкА
IRRM Повторяющийся импульсный обратный ток VDRM = VRRM Tj = 125 °C 5 мА
  1. Минимум IGT гарантируется на уровне 5% от IGT max.
  2. Для обеих полярностей от A2 к A1.
Тепловое сопротивление 
Обозначение Условия Значение Ед. изм.
Rth(j-c) Тепловое сопротивление переход-корпус RD91 (изолированный корпус)/ТОРЗ изолированный 0,9 °С/Вт
TOP3 0,6
Rth(j-a) Тепловое сопротивление переход-среда ТОРЗ / TOP3 изолированный 50 °С/Вт
Зависимость максимальной рассеиваемой мощности от действующего тока (полный цикл)
Зависимость действующего тока от температуры корпуса
Зависимость теплового сопротивления от длительности импульса
Характеристики в отрытом состоянии (максимальные значения)
Зависимость ударного тока в открытом состоянии от количества циклов
Зависимость ударного тока в открытом состоянии от синусоидального импульса и значения плавления
Относительное изменение отпирающего тока, тока удержания и тока включения в зависимости от температуры перехода
Относительное изменение критической скорости снижения основного тока в зависимости от критической скорости нарастания напряжения
Относительное изменение критической скорости снижения основного тока в зависимости от температуры перехода
Расшифровка серии
Размеры для корпуса TOP3
Размеры для корпуса RD91

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

X Наличие: Есть в наличии Код товара: SM00041 380 x =

  • от 2 шт. — 340 р.
  • от 3 шт. — 290 р.

Симистор BTA41-600BRG STM — оригинальный симисторный полупроводниковый элемент на 40А (триак) STMicroelectronics для управления нагрузками с током потребления до 40 Ампер (8,8 кВт при напряжении 220В) при соответствующем охлаждении. Используется в качестве силового элемента регуляторов мощности типа РМ-2, РМ-2 new, РМ-2м, РМ-2 Pro, представленных в данном разделе.

Краткие технические характеристики BTA41-600BRG STM

  • Максимальное среднее значение тока в открытом состоянии — 40 Ампер
  • Максимальный кратковременный импульсный ток в откр. сост. — 400 А
  • Номинальное рабочее напряжение в открытом состоянии — 220 Вольт
  • Максимальное напряжение в закрытом состоянии (обратное Uобр.) — 600 В
  • Скорость открытия (срабатывания) выхода — 0,000002 сек
  • Температура эксплуатации —  — 40 …+125°С
  • Тип корпуса — TOP-3

Подробнее — смотрите во вкладке «характеристики».

BTA41-600BRG имеет два силовых вывода подключения — А1 (левый) и А2 (средний) и один управляющий — G (правый). Его особенностью является возможность проводить ток как от катода к аноду, так и наоборот. Наиболее надежный метод подключения к выводам (особенно А1 и А2) — это пайка. Симистор ВТА41 может как впаиваться в специальную плату, так и может осуществляться прямая пайка силовых и управляющих проводов к его ножкам. Так как провода обычно значительно толще, чем отводы симистора, будьте аккуратны, чтобы не отломить их. Рекомендуем производить подключение через промежуточную колодку, как на готовых симисторных блоках типа SR2025 и SR2032. К регуляторам мощности РМ-2 подключение производится проводом 0,5 — 1,5 кв.мм, к ТЭНу или другому электропотребителю — от 2,5 до 6,0 кв.мм.

При подключении управляющих и измерительных проводов на входе и выходе симистора BTA41-600BRG STMicroelectronics к симисторным регуляторам мощности — Обратите внимание!!! — что у РМ-2, РМ-2 new подключение одинаковое: кл.1 — А2, кл.2 — G, кл.4 — А1, а в модификациях РМ-2м, РМ-2 Pro — схемы подключения отличаются.

Так же на нашем сайте представлен еще один менее мощный и более дешевый вариант оригинального симистора, в таком же исполнении корпуса TOP-3 — симистор BTA26-600BRG STM для работы с нагрузкой до 5,5 кВт (25А). Данная модель, в количестве одной штуки, входит в стандартную комплектацию регуляторов-стабилизаторов напряжения РМ-2 и  РМ-2 new. Для регуляторов с литерой М и Pro — РМ-2м, РМ-2 Pro, приобретается отдельно.

Как купить симистор BTA41-600BRG STM

При заказе данных элементов, учитывайте стоимость доставки по Вашему адресу, которая может превышать стоимость 1 изделия. Поэтому рекомендуем приобретать несколько симисторов одновременно (как запасной) — цена при заказе более 1 штуки будет ниже. Либо одновременно с регуляторами мощности или симисторными блоками. Для того чтобы купить оригинальный симистор BTA41-600BRG STM на нашем сайте — просто добавьте его в корзину, откройте ее, заполните свои данные и нажмите «оформить заказ».

Также можно использовать форму для упрощенного быстрого заказа — «Купить в 1 клик» — здесь надо вводить только: имя, телефон и адрес электронной почты.

Тип прибора
Симисторный модуль для регулятора РМ-2
Модель BTA41-600BRG
Производитель STM
Технические характеристики
Максимальный ток активной нагрузки, А 40
Максимальная мощность нагрузки, Вт 8800
Максимальный краткий импульсный ток в откр. сост., А 400
Рабочее напряжение прибора, В 220, 50 Гц
Максимальное обратное напряжение, В 600
Отпирающий ток, минимальный, мА 50 (100)
Ток удержания, мА 80
Напряжение управления постоянное DC, В 0,2 … 1,3
Время (скорость) открытия выхода, сек 0,000002
Материалы и комплектующие
Силовые элементы коммутации двунаправленный тиристор
Модель силовых элементов BTA41-600BRG, Standart
Вес, размеры, энергопотребление
Габаритные размеры (Д х Ш х В), мм 36х20х4,5
Вес, кг 0,005
Тип корпуса TOP-3
Температурный режим эксплуатации, °С -40…+125
Защита и гарантия
Гарантия 12 мес.

Похожие товары:

Симистор BTA26-600BRG STM

320 р.

Сопутствующие товары

Регулятор мощности РМ-2

Цифровой высокоточный регулятор мощности РМ-2 с функцией разгона (новая модель) в комплекте с симист..

1950 р. 2380 р.

Терморегулятор ИРТ-4К четырехканальный от 1 до 4-х датчиков t

Терморегулятор ИРТ-4К – это прогрессивная цифровая модель на DIN-рейку, с программируемой конфигурац..

3980 р. 4840 р.

Таймер регулятор ШИМ-2 с терморегуляторами

Регулятор ШИМ-2 представляет собой таймер с регулировкой скважности импульсов и декрементом, с возмо..

2760 р. 3420 р.

Регулятор мощности РМ-2 Pro

РМ-2 Pro профессиональный регулятор-стабилизатор мощности с точностью настройки Uвых ± 0,1 В, встрое..

2680 р. 2980 р.

оригинальный симистор BTA41 STM, симистор для регулятора мощности, симистор 40А 600В

Разновидности тиристоров

Тиристорами принято называть группу полупроводниковых приборов (триодов), способных пропускать или не пропускать электрический ток в заданном режиме и в определенные промежутки времени. Так создают условия работоспособности схемы в соответствии с ее функциями.

Управление работой тиристоров осуществляется двумя способами:

  • подачей напряжения определенной величины для открытия или закрытия прибора, как в динисторах (диодных тиристорах) – двухэлектродных приборах;
  • подачей импульса тока определенной длительности или величины на управляющий электрод, как в тринисторах и симисторах (триодных тиристорах) – трехэлектродных приборах.

По принципу работы эти приборы различаются на три вида.

Динисторы открываются при достижении напряжения определенной величины между катодом и анодом и остаются открытыми до уменьшения напряжения опять же до установленного значения. В открытом состоянии работают по принципу диода, пропуская ток в одном направлении.

Тринисторы открываются при подаче тока на контакт управляющего электрода и остаются открытыми при положительной разности потенциалов между катодом и анодом. То есть они открыты, пока в цепи существует напряжение. Это обеспечивается наличием тока, сила которого не ниже одного из параметров тринистора – тока удержания. В открытом состоянии также работают по принципу диода.

Симисторы – разновидность тринисторов, которые пропускают ток по двум направлениям, находясь в открытом состоянии. По сути, они представляют пятислойный тиристор.

Запираемые тиристоры – тринисторы и симисторы, которые закрываются при подаче на контакт управляющего электрода тока обратной полярности, нежели та, которая вызвала его открытие.

Зачем нужна проверка

Прибор ночного видения пнв-57е: описание, характеристики, инструкция

В процессе ремонта или сборки новой схемы невозможно обойтись без электрических деталей. Одной из таких деталей является симистор. Его применяют в схемах устройств сигнализации, световых регуляторах, радиоприборах и многих отраслях техники. Иногда его применяют повторно после демонтажа неработающих схем, и нередко приходится встречать элемент с утраченной от длительного использования или хранения маркировкой. Случается, что и новые детали надо проверить.

Как же быть уверенным, что симистор, установленная в схему, действительно исправен, и в будущем не нужно будет затрачивать много времени на отладку работы собранной системы?

Для этого необходимо знать, как проверить симистор мультиметром или тестером. Но сначала надо понять, что собой представляет данная деталь, и как она работает в электрических схемах.

По сути, симистор является разновидностью тиристора. Название составлено из этих двух слов – «симметричный» и «тиристор».

Описание принципа работы и устройства

Основное отличие этих элементов от тиристоров заключается в двунаправленной проводимости электротока. По сути это два тринистора с общим управлением, включенных встречно-параллельно (см. А на рис. 1) .

Рис. 1. Схема на двух тиристорах, как эквивалент симистора, и его условно графическое обозначение

Теперь рассмотрим структуру полупроводника (см. рис. 2.) Как видно из схемы, в устройстве имеется пять переходов, что позволяет организовать две структуры: р1-n2-p2-n3 и р2-n2-p1-n1, которые, по сути, являются двумя встречными тринисторами, подключенными параллельно.

Рис. 2. Структурная схема симистора

Когда на силовом выводе Т1 образуется отрицательная полярность, начинается проявление тринисторного эффекта в р2-n2-p1-n1, а при ее смене – р1-n2-p2-n3.

Заканчивая раздел о принципе работы приведем ВАХ и основные характеристики прибора.

ВАХ симистора

Обозначение:

  • А – закрытое состояние.
  • В – открытое состояние.
  • UDRM (UПР) – максимально допустимый уровень напряжения при прямом включении.
  • URRM (UОБ) – максимальный уровень обратного напряжения.
  • IDRM (IПР) – допустимый уровень тока прямого включения
  • IRRM (IОБ) – допустимый уровень тока обратного включения.
  • IН (IУД) – значения тока удержания.

Как проверить работоспособность симистора?

Полимерные (пластиковые) колодезные кольца

В сети можно найти несколько способ, где описан процесс проверки при помощи мультиметра, те, кто описывал их, судя по всему, сами не пробовали ни один из вариантов. Чтобы не вводить в заблуждение, следует сразу заметить, что выполнить тестирование мультиметром не удастся, поскольку не хватит тока для открытия симметричного тринистора. Поэтому, у нас остается два варианта:

  1. Использовать стрелочный омметр или тестер (их силы тока будет достаточно для срабатывания).
  2. Собрать специальную схему.

Алгоритм проверки омметром:

  1. Подключаем щупы прибора к выводам T1 и T2 (A1 и A2).
  2. Устанавливаем кратность на омметре х1.
  3. Проводим измерение, положительным результатом будет бесконечное сопротивление, в противном случае деталь «пробита» и от нее можно избавиться.
  4. Продолжаем тестирование, для этого кратковременно соединяем выводы T2 и G (управляющий). Сопротивление должно упасть примерно до 20-80 Ом.
  5. Меняем полярность и повторяем тест с пункта 3 по 4.

Если в ходе проверки результат будет таким же, как описано в алгоритме, то с большой вероятностью можно констатировать, что устройство работоспособное.

Заметим, что проверяемую деталь не обязательно демонтировать, достаточно только отключить управляющий вывод (естественно, обесточив предварительно оборудование, где установлена деталь, вызывающая сомнение).

Необходимо заметить, что данным способом не всегда удается достоверно проверку, за исключением тестирования на «пробой», поэтому перейдем ко второму варианту и предложим две схемы для тестирования симметричных тринисторов.

Схему с лампочкой и батарейкой мы приводить не будем в виду того, что таких схем достаточно в сети, если вам интересен этот вариант, можете посмотреть его в публикации о тестировании тринисторов. Приведем пример более действенного устройства.

Схема простого тестера для симисторов

Обозначения:

  • Резистор R1 – 51 Ом.
  • Конденсаторы C1 и С2 – 1000 мкФ х 16 В.
  • Диоды – 1N4007 или аналог, допускается установка диодного моста, например КЦ405.
  • Лампочка HL – 12 В, 0,5А.

Можно использовать любой трансформатор с двумя независимыми вторичными обмотками на 12 Вольт.

Алгоритм проверки:

  1. Устанавливаем переключатели в исходное положение (соответствующее схеме).
  2. Производим нажатие на SB1, тестируемое устройство открывается, о чем сигнализирует лампочка.
  3. Жмем SB2, лампа гаснет (устройство закрылось).
  4. Меняем режим переключателя SA1 и повторяем нажатие на SB1, лампа снова должна зажечься.
  5. Производим переключение SA2, нажимаем SB1, затем снова меня ем положение SA2 и повторно жмем SB1. Индикатор включится, когда на затвор попадет минус.

Теперь рассмотрим еще одну схему, только универсальную, но также не особо сложную.

Схема для проверки тиристоров и симисторов

Обозначения:

  • Резисторы: R1, R2 и R4 – 470 Ом; R3 и R5 – 1 кОм.
  • Емкости: С1 и С2 – 100 мкФ х 10 В.
  • Диоды: VD1, VD2, VD5 и VD6 – 2N4148; VD2 и VD3 – АЛ307.

В качестве источника питания используется батарейка на 9V, по типу Кроны.

Тестирование тринисторов производится следующим образом:

  1. Переключатель S3, переводится в положении, как продемонстрировано на схеме (см. рис. 6).
  2. Кратковременно производим нажатие на кнопку S2, тестируемый элемент откроется, о чем просигнализирует светодиод VD
  3. Меняем полярность, устанавливая переключатель S3 в среднее положение (отключается питание и гаснет светодиод), потом в нижнее.
  4. Кратковременно жмем S2, светодиоды не должны загораться.

Если результат будет соответствовать вышеописанному, значит с тестируемым элементом все в порядке.

Теперь рассмотрим, как проверить с помощью собранной схемы симметричные тринисторы:

  • Выполняем пункты 1-4.
  • Нажимаем кнопку S1- загорается светодиод VD

То есть, при нажатии кнопок S1 или S2 будут загораться светодиоды VD1 или VD4, в зависимости от установленной полярности (положения переключателя S3).

С помощью элемента питания и лампочки

Техническое обслуживание и ремонт воздушных линий

Существует вариант прозвона симистора простейшим тестером, представляющим собой разорванную однолинейную цепь с источником питания и контрольной лампой. Еще для проверки понадобится дополнительный источник питания. В качестве его может быть использован любой элемент питания, например типа АА с напряжением 1,5 В.

Прозванивать деталь нужно в определенном порядке. В первую очередь необходимо соединить контакты тестера с рабочими контактами симистора. Контрольная лампа при этом гореть не должна.

Затем необходимо подать напряжение между управляющим и рабочим электродами с дополнительного источника питания. На рабочий электрод подается полярность, соответствующая полярности подключенного тестера. При подключении контрольная лампа должна загореться. Если переход симистора настроен на соответствующий ток удержания, то лампа должна гореть и при отключении дополнительного источника питания от управляющего электрода до момента отключения тестера.

Так как прибор должен пропускать ток в обоих направлениях, для надежности можно повторить проверку, изменив полярность подключения тестера к симистору на противоположную. Надо проверить работоспособность прибора при обратном направлении тока через полупроводниковый переход.

Если до подачи напряжения на управляющий электрод контрольная лампа загорелась и продолжает гореть, то деталь неисправна. Если при подаче напряжения контрольная лампа не загорелась, симистор также считается неисправным, и использовать его в дальнейшем нецелесообразно.

Соблюдая эти простейшие правила, можно произвести отбраковку некачественных или отработавших свой ресурс деталей.

Особенности

Чтобы иметь полное представление о симметричных тринисторах, необходимо рассказать про их сильные и слабые стороны. К первым можно отнести следующие факторы:

  • относительно невысокая стоимость приборов;
  • длительный срок эксплуатации;
  • отсутствие механики (то есть подвижных контактов, которые являются источниками помех).

В число недостатков приборов входят следующие особенности:

Необходимость отвода тепла, примерно из расчета 1-1,5 Вт на 1 А, например, при токе 15 А величина мощности рассеивания будет около 10-22 Вт, что потребует соответствующего радиатора. Для удобства крепления к нему у мощных устройств один из выводов имеет резьбу под гайку.

Симистор с креплением под радиатор

  • Устройства подвержены влиянию переходных процессов, шумов и помех;
  • Не поддерживаются высокие частоты переключения.

По последним двум пунктам необходимо дать небольшое пояснение. В случае высокой скорости коммутации велика вероятность самопроизвольной активации устройства. Помеха в виде броска напряжения также может привести к этому результату. В качестве защиты от помех рекомендуется шунтировать прибор RC цепью.

RC-цепочка для защиты симистора от помех

Помимо этого рекомендуется минимизировать длину проводов ведущих к управляемому выводу, или в качестве альтернативы использовать экранированные проводники. Также практикуется установка шунтирующего резистора между выводом T1 (TE1 или A1) и управляющим электродом.

Применение

Этот тип полупроводниковых элементов первоначально предназначался для применения в производственной сфере, например, для управления электродвигателями станков или других устройств, где требуется плавная регулировка тока. Впоследствии, когда техническая база позволила существенно уменьшить размеры полупроводников, сфера применения симметричных тринисторов существенно расширилась. Сегодня эти устройства используются не только в промышленном оборудовании, а и во многих бытовых приборах, например:

  • зарядные устройства для автомобильных АКБ;
  • бытовое компрессорное оборудования;
  • различные виды электронагревательных устройств, начиная от электродуховок и заканчивая микроволновками;
  • ручные электрические инструменты (шуроповерт, перфоратор и т.д.).

И это далеко не полный перечень.

Одно время были популярны простые электронные устройства, позволяющие плавно регулировать уровень освещения. К сожалению, диммеры на симметричных тринисторах не могут управлять энергосберегающими и светодиодными лампами, поэтому эти приборы сейчас не актуальны.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий