TDS/EC/Temp метр (Солемер/Кондуктометр) для измерения электропроводности, жесткости и температуры воды

Для правильного развития растений необходимо использовать растворы с оптимальным набором макро- и микроэлементов. Но, как контролировать содержание питательных веществ в растворе?

TDS

TDS – общее содержание растворенных твердых веществ, является мерой комбинированного содержания всех неорганических и органических веществ, содержащихся в жидкости.

Для измерения концентрации растворенных твердых веществ в растворе используется TDS-метр (солемер).

TDS-метр обычно отображает концентрацию в частях на миллион (ppm или мг/л).

Единственный точный метод измерения TDS – это, испарить воду и взвесить сухой остаток. Это тяжело и трудоемко, поэтому, в качестве дешевого метода, используют приборы для измерения TDS, которые оценивают уровень TDS путем измерения ЕС воды.

Каждый TDS-метр является по сути ЕС-метром. TDS-метр измеряет ЕС и затем пересчитывает в TDS, используя внутренний поправочный коэффициент. TDS-метры разных производителей могут иметь разный коэффициент пересчета.

image

EC

EC – электрический измеритель проводимости. Он широко используется в гидропонике, аквакультуре для мониторинга количества солей или примесей в растворе.

Электропроводность – это способность раствора проводить электрический ток. EC измеряется в µS/cm (мкСм/см или микросименс на сантиметр) или mS/cm (мСм/см – миллисименс на см). Формула пересчета: 1 mS/cm = µS/cm : 1000.

Для измерения электропроводимости используется ЕС-метр (кондуктометр).

Коммерческие производители отдают предпочтение кондуктометрам (ЕС-метрам), потому что они дают более точную оценку концентрации питательного раствора, в то время как измерение TDS является “грубой” оценкой.

Конвертер перевода PPM в EC.

Используется коэффициент перевода 0,7.

Введите значение:

PPM (мг/л)

EC (mS/cm)

image

EC в питательном растворе

Проводимость раствора сильно зависит от температуры. Поэтому, важно измерять EC при той температуре, при которой метр калибровался. Но, сейчас продаются кондуктометры со встроенным сенсором для автоматической компенсации температуры.

Так же, ЕС всегда должна измеряться при постоянном рН. Измеряя ЕС при рН 5 и при рН 7, получите совершенно разные значения, так как ионы, которые определяют рН, имеют очень большое влияние на показатель ЕС.

В питательном растворе, который используется в гидропонной системе, со временем EC будет меняться. Это происходит из-за разной скорости поглощения воды и питательных веществ растением. Например, при высокой температуре воздуха увеличивается транспирация (испарение воды растением), и растение поглощает из раствора больше воды, чем солей. Эта дополнительная вода испаряется с листьев и охлаждает растение. Соответственно, EC раствора увеличивается. Поэтому, в жаркую погоду необходимо снижать концентрацию раствора и чаще подавать раствор в корневую зону.

Так зачем же нам нужно измерять EC?

Измерять EC нам необходимо, чтобы контролировать общее содержание питательных веществ в растворе. Электрическая проводимость может показать вам, что раствор потерял свою питательную ценность или что уменьшилось количество воды из-за испарения, при условии, что pH остался неизменным.

Если значение ЕС увеличилось, для снижения концентрации солей, можно добавить воду.

Если значение ЕС сильно снизилось (более чем на 30% от первоначального значения), значит ваш раствор существенно изменился по составу и его нужно заменить на новый. Нельзя добавлять питательные элементы, потому что вы не знаете, какие питательные вещества растение использовало, а какие нет. Конечно, вы всегда можете сделать дорогой химический анализ, но самый дешевый и простой способ – приготовить новый раствор.

Если, все таки, решитесь добавить на свой страх и риск элементы для повышения EC, то имейте ввиду, что с наибольшей вероятностью вызывают изменения EC в растворе – N и K. При пополнении раствора никогда нельзя добавлять микроэлементы и фосфор.

EC в прикорневой зоне

Другим фактором, который необходимо учитывать, это сколько питательных элементов находится в корневой зоне, количество которых будет изменяться в зависимости от характеристик среды, состава питательного раствора и частоты рециркуляции. Раствор в корневой зоне всегда будет иметь другой баланс питательных веществ и, как правило, другую ЕС и рН. Для определения EC в корневой зоне, нужно взять раствор, который вытекает из субстрата. Если EC высокое, то субстрат выщелачивают водой, чтобы удалить накопленные соли.

Закрытые системы (с рециркуляцией раствора).

В таких системах (периодическое подтопление, NFT) EC со временем возрастет. Как быстро это произойдет, зависит от размера ваших растений, климатических условий, объема раствора в системе (меньше объем раствора – быстрее изменения). Если ЕС становится слишком высокой, то растения будут страдать и в конце концов умрут. Если у вас нет EC-метра, то можно, конечно, постоянно добавлять исходный раствор, это немножко снизит EC, что даст возможность растениям выжить, но полноценно развиваться они не будут. В таких системах, если нет автоматических контролеров и регуляторов EC и pH, нужно добавлять воду, и через некоторое время полностью менять раствор.

Открытые системы (без рециркуляции).

В таких системах (например, капельный полив) необходимо контролировать EC не исходного раствора, а стекающего. Так же, как и в предыдущих системах, EC со временем увеличивается. Для снижения концентрации вы можете снизить ЕС подаваемого раствора, и/или увеличить количество протекающего раствора за счет увеличения объема и/или частоты полива.

Осадок на субстрате

Кто использует гравий или керамзит в качестве субстрата, наверно, замечали, что на нем со временем появляется серо-белый осадок (главным образом осажденный фосфат кальция и сульфата кальция), так же в этом осадке могут присутствовать микроэлементы. Осадок может быть основным источником элементов в питании растения, независимо от того, что оно получает с помощью раствора. Желательно проанализировать состав осадка для корректировки состава питательного раствора. Например, если в осадке накопились элементы Ca, Mg, P, S, Fe, Mn, Cu, Zn, то подавать раствор можно состоящий только из элементов K, N и B, что приведет к значительной экономии при покупке солей.

Необходимая концентрация раствора

Растения, как правило, делятся на три группы, требующие высокой, средней и низкой EC.

Зелень, салат, бобы и большинство трав требуют низкую EC – от 0,7 до 1,5 мСм/см (mS/cm) зимой и от 1,5 до 1,8 мСм/см (mS/cm) летом.

Огурцы, дыни, многие декоративные растения и некоторые виды капусты предпочитают среднюю EC – около 1,6-1,8 мСм/см (mS/cm) летом и 1,8-2,2 мСм/см (mS/cm) в зимний период.

Помидоры, перец и баклажаны предпочитают более высокую проводимость, порядка 2,5 – 3,6 мСм/см (mS/cm) летом и 3,6 до 5,0 мСм/см (mS/cm) в зимний период.

Так же можете посмотреть в таблице диапазон питательных веществ в гидропонных растворах

TDS метр (тестер, солемер) — устройство для измерения минерализации воды, т.е содержания в ней твёрдых веществ (солей). Сама аббревиатура означает Total Dissolved Solids (общее количество растворённых частиц).

В обзоре я сравню два китайских прибора: один от известного бренда Xiaomi за 7$, второй безбрендовый TDS-3 за 3$, но тоже весьма популярный на Aliexpress.

Модель Xiaomi Mi TDS TDS-3
Диапазон измерений 0-9990 PPM
Допустимая температура раствора 0-80 ºC
Цена деления 1 PPM
Погрешность ± 2%
Термокомпенсация Да
Отображение температуры на дисплее Нет Да
Калибровка Заводская (342 PPM NaCl)
Возможность калибровки Нет Да
Коэффициент пересчета NaCl (0,5)
Питание 3 В (LR44 2 шт)
Автовыключение 2 мин 5 мин
Размеры 150x16x16 мм 155x29x21
Вес (без батареек) 24 г 42 г
Инструкция открыть открыть
Xiaomi TDS TDS-3
Стоимость на момент покупки 7,7$ 0,7$ вернулось кэшбэком
Доставка 23 дня 55 дней
Ссылки Товар Продавец (UniFish Flagship Store) Товар Продавец (Pingzi_Store)
Запрос для поиска Xiaomi TDS TDS3

Принцип работы

Принцип работы TDS метров основан на измерении удельной электропроводности переменным током. Это не очень точный способ, но другие доступны только в лабораториях (гравиметрический анализ). То есть обозреваемые приборы попросту измеряют электрическую проводимость воды (мкСм/см) и пересчитывают её в мг/л (бывают разные коэффициенты пересчёта, в нашем случае 0,5). На проводимость также влияет температура, оба прибора умеют её измерять и вносить поправку.

TDS принято измерять в PPM (частицы на миллион) или мг/л (миллиграммы на литр). Например, 100 PPM означает, что в измеряемом растворе содержится 100 частиц солей на один миллион частиц воды или приблизительно 100 миллиграмм солей на литр воды.

Частые заблуждения про TDS

  1. По значению TDS можно оценить жёсткость воды. Не совсем так, на жёсткость влияют соли магния и кальция, а TDS показывает содержание всех солей, проводящих электрический ток.
  2. TDS метрами оценивают качество фильтрации воды. На деле такую проверку можно устроить только для обратноосмотических фильтров, которые как раз задерживают большинство солей и в десятки раз снижают уровень TDS. Обычные угольные картриджи или трёхступенчатые фильтры не способны на это, TDS на выходе будет таким же, как до фильтра, может чуть-чуть ниже.

Комплектация и внешний вид

Xiaomi как обычно уделяют внимание дизайну. Их устройство поставляется в стильной коробочке с характеристиками, какими-то серийными номерами и т.п. TDS-3 по сути no-name (на заводе могут добавить любой логотип по желанию заказчиков), пришло без розничной коробки:

Размеры Xiaomi Mi TDS составляют 150x16x16 мм, вес 24 г (без батареек), TDS-3 немного больше: 155x29x21 мм и вес 42 г.

У TDS-3 на лицевой стороне три кнопки: фиксирование показаний (HOLD), отображение температуры (TEMP) и включение/выключение. TDS от Xiaomi имеет лишь одну кнопку питания. Оба прибора питаются от двух батареек LR44 (357A), уже были установлены.

Спереди измерительные щупы и датчик температуры:

Xiaomi заявляют, что щупы сделаны из титана, проверить это я не могу, придется поверить на слово. Из чего сделаны щупы TDS-3 неизвестно, но тоже какой-то нержавеющий материал.

Тестирование

Сравнение точности я начал с дистиллированной воды:

Оба прибора показали 8 PPM, это нормально, хотя бывает и меньше (2-5 PPM).

Далее обычная вода из-под крана:

Разница небольшая: 342 PPM против 329 PPM.

И наконец развёл слабый раствор соли:

На удивление, результат одинаковый: 3190 PPM (319 x10).

Похоже, у китайцев не возникает сложностей с калибровкой тестеров на заводе. Сзади корпуса TDS-3 есть отверстие для калибровки, но в моём экземпляре толка от него не было так как на плате отсутствовал подстроечный резистор. Если бы он был, то для самостоятельной калибровки потребуется либо калибровочный раствор, либо можно размешать обычную соль в дистиллированной воде, правда нужны точные весы.

Вывод

Мне повезло с точностью: оба устройства показывают практически одинаковые результаты. Если для вас на первом месте цена смело покупайте TDS-3, если же готовы заплатить в два раза больше за дизайн и бренд выбирайте Xiaomi Mi TDS.

Главное определиться нужен ли вам TDS метр, области применения таких устройств весьма ограниченные: как я писал выше, их можно применять только для приблизительной оценки насыщения раствора солями (проводящими электрический ток), но не для проверки качества воды.

Возможные цели применения TDS:

  1. Контроль загрязнённости обратноосмотических фильтров. Именно таких! С обычными фильтрами не прокатит т.к они задерживают только механические примеси, а не растворённые соли. Вы проверяете воду из-под крана (пусть будет 300 PPM), после обратноосмотического фильтра TDS показывает 10-30 PPM, всё отлично. В какой-то день PPM показывает 100 и вы понимаете, что пора менять мембрану обратного осмоса или возникла другая неполадка.
  2. По какой-то причине вам требуется проверить степень дистилляции воды, с этой задачей TDS справится на отлично.
  3. На форумах вычитал, что TDS тестерами пользуются некоторые аквариумисты для подготовки воды с нужной минерализацией, определения количества загрязнений в аквариумной воде, контроля расхода добавленных удобрений и т.д. Хотя другие пишут, что требуются узкоспециализированные тесты на GH и kH, а от TDS толка мало.
  4. При выращивании растений гидропонным способом может требоваться контроль количества солей в питательном растворе.

Есть дополнения или замечания? Пишите в комментариях 🙂

Кондуктометр (ЕС метр) – это прибор, предназначен для измерения электропроводимости растворов, пара или конденсата. Кондуктометр применяют для анализа концентрации питательных растворов. При растворении той или иной соли, кислоты или щелочи в воде молекулы этого вещества расщепляются на электрически заряженные частицы – ионы. Количество тока, проходящего через раствор, находится в прямой зависимости от числа ионов. Поэтому, по электропроводимости питательного раствора можно судить о его концентрации. Чистая дистиллированная вода не проводит электрический ток. Но если в ней растворить минеральные соли, она начинает проводить электричество и электропроводность увеличивается пропорционально.

EC – это наиболее стабильный показатель общей концентрации питательного раствора. Даже незначительное повышение концентрации питательного раствора может значительно затруднить его поглощение растением. Поэтому столь важно постоянно измерять электропроводность раствора. Эти измерения позволят оценить концентрацию питательного раствора и не допустить превышения ее нормы или падения ниже оптимальных значений.

Характеристики кондуктометров

Наиболее важными параметрами для кондуктометра является чувствительность измерения и наличие температурной компенсации.

Кондуктометры бывают различных видов и формы. Могут быть встроенными в комплексные приборы, совместно с pH-метром и TDS-метром. Кондуктометры бывают периодического действия и постоянного, предназначенные для постоянного мониторинга состояния раствора. Могут быть высокоточными лабораторными, или же портативными, для быстрого и удобного анализа.

TDS метры и кондуктометры – в чем разница?

Каждый TDS-метр по сути является кондуктометром. Хотя ЕС и TDS часто используются как синонимы, есть некоторые важные различия. ЕС, в применении к воде, относится к измерениям электрических зарядов воды. TDS ссылается на общую сумму растворенных солей в воде. Действительный верный метод измерения TDS является метод испарения воды и взвешивания сухого остатка. Так как это практически невозможно сделать для обычного пользователя, можно оценить уровень TDS путем измерения ЕС воды.

Все растворы имеют электрический заряд. Таким образом, можно оценить количество TDS путем определения ЕС раствора. Однако, различные по составу растворы имеют различные заряды, поэтому необходимо преобразовать ЕС в TDS с использованием пересчета, который имитирует заряд.

Как перевести единицы измерения EC (mS/cm) в TDS (ppm)

Для перевода единиц измерения EC в TDS необходимо определить, какой коэффициент пересчета вы хотите использовать (NaCl, 442 или KCl) и сделать пересчет. Большинство измерительных приборов используют фактор пересчета по NaCl, который составляет в среднем 0,5.

Далее необходимо понять в каких единицах измерения выводит результат Ваш EC-метр. Это могут быть либо микросименсы на сантиметр (мкСм/см), либо миллисименсы на сантиметр (мСм/см). Понять это несложно. В большинстве случаев это указанно на самом приборе или в инструкции к нему. Если же такой информации нет, то несложно понять по показаниям. Если это от нескольких сотен до нескольких тысяч (210, 520, 1250, и др.), то единицей измерения будет «мкСм/см». Если это небольшие цифры (0.1, 0.6, 1.25 и др) в таком случаи – «мСм/см». В последнем случаи необходимо домножить значение на 1000, для перевод значений в «мкСм/см» [англ. μS/cm].

Теперь остается лишь умножить значение EC-метра (в «мкСм/см») на коэффициент 0.5 (или другой), и вы получите значение уровня TDS (ppm).

Пример. EC-метр показывает значение 0.6 мСм/см. В таком случаи:

0.6 мСм/см = 600 мкСм/см

TDS = 600·0.5 = 300 ppm

Если фактор пересчета составляет 0.7 mS/cm, то выходит следующий пересчет:

TDS = 600·0.7 = 420 ppm

Для удобства, вы можете воспользоваться нашими таблицами для перевода значений EC, TDS (mS/cm, ppm).

Для более подробного изучения темы рекомендуем посетить соответствующий раздел форума: «EC/TDS/PPM-метры».

  • 34786 просмотров

Электрическая проводимость метр ( метр EC ) измеряет электрическую проводимость в растворе . Он имеет множество применений в исследованиях и инженерии, часто используется в гидропонике , аквакультуре , аквапонике и пресноводных системах для контроля количества питательных веществ, солей или примесей в воде.

Принцип

Обычные лабораторные кондуктометры используют потенциометрический метод и четыре электрода. Часто электроды имеют цилиндрическую форму и расположены концентрически. Электроды обычно изготавливаются из металлической платины. На внешнюю пару электродов подается переменный ток. Измеряется потенциал между внутренней парой. Электропроводность в принципе может быть определена с использованием расстояния между электродами и их площади поверхности с использованием закона Ома, но, как правило, для точности калибровка используется с использованием электролитов с хорошо известной проводимостью.

В промышленных датчиках электропроводности часто используется индукционный метод, преимущество которого заключается в том, что жидкость не смачивает электрические части датчика. Здесь используются две индуктивно-связанные катушки. Одна из них – это управляющая катушка, создающая магнитное поле, и на нее подается точно известное напряжение. Другой образует вторичную обмотку трансформатора. Жидкость, проходящая через канал в датчике, образует один виток вторичной обмотки трансформатора. Индуцированный ток – это выход датчика.

Другой способ – использовать четырехэлектродные датчики проводимости, изготовленные из коррозионно-стойких материалов. Преимуществом четырехэлектродных датчиков проводимости по сравнению с индуктивными датчиками является компенсация масштабов и возможность измерения низких (ниже 100 мкСм / см) проводимости (функция, особенно важная при измерении почти 100% плавиковой кислоты).

Температурная зависимость

Электропроводность раствора сильно зависит от температуры , поэтому важно либо использовать прибор с температурной компенсацией, либо откалибровать прибор при той же температуре, что и измеряемый раствор. В отличие от металлов, проводимость обычных электролитов обычно увеличивается с повышением температуры.

В ограниченном диапазоне температур влияние температуры на проводимость раствора можно моделировать линейно, используя следующую формулу:

σ Т знак равно σ Т c а л [ 1 + α ( Т – Т c а л ) ] { displaystyle sigma _ {T} = { sigma _ {T_ {cal}} [1+ alpha (T-T_ {cal})]}} Викискладе есть медиафайлы по теме измерители электропроводности .
  • Блог компании Аквафор,
  • Гаджеты,
  • Биотехнологии,
  • Физика,
  • Здоровье

В 90-е было модно закупаться измерителями уровня нитратов. Пищевые красители, консерванты — ерунда, а вот арбуз на нитраты проверить необходимо. Увы, эта история оказалась профанацией. Зато теперь из каждого youtube-утюга рассказывают про измерители качества воды — TDS-метры. На волне общего детокса и стремления к ЗОЖ многим хочется приобрести волшебную палочку, которая обеспечит здоровый образ жизни и вечную молодость, указав, что пить, а что не пить. Соблазн определить качество воды «здесь и сейчас» симпатичным гаджетом, напоминающим электронный градусник, очень высок. Хайп вокруг TDS-метров продолжает множиться, ведь они обещают заменить лабораторию, посчитать растворенныe примеси и решить, «пить или не пить?». Все это — удивительная по масштабу подмена понятий. Ведь определение «чистоты» воды по содержанию неизвестных растворенных примесей можно поставить в один ряд с измерением удава в попугаях. image Что не так в истории с TDS-метрами и стандартами питьевой воды, можно ли доверять TDS-метру и пить «одобренную» им жидкость — ниже разбираемся подробно и с использованием устрашающих терминов. Кому-то достаточно, что вода из крана прозрачная и не пахнет, кто-то замораживает для придания «природной структуры», некоторые фильтруют, измеряя чистоту по отсутствию накипи, а продвинутый пользователь с TDS-метром пишет отзыв на тему «плохой фильтр, и вода от него грязная», получив высокое значение ppm. Объясним и это, но обо всем по порядку:

  • о стандартах водоочистки и нюансах понятий «чистая» — «питьевая»
  • является ли минерализация загрязнением и критерием качества
  • как меняются показания TDS-метра после фильтра
  • как устроен прибор, и почему называть его TDS-метром некорректно
  • в чем профит обладателя

Поскольку в природе нет ничего абсолютно чистого, то и питьевая вода — раствор с примесями. Среди них: условно полезные, вредные, безобидные и даже «безобидные, но неприятные». Содержание примесей в водопроводах мира регулируют национальные законодательства, иногда ориентируясь на рекомендации ВОЗ. Уровни допустимых концентраций веществ, однако, не едины. Разница обусловлена геологическими особенностями стран и разумной рациональностью. В условиях мегаполиса нецелесообразно отказываться от стальных труб для удаления ржавчины, экономически невыгодно снижать жесткость, невозможно обеспечивать бактериологическую безопасность без хлорирования (в большинстве водопроводов). Если в воде постоянно присутствуют высокие концентрации токсичных примесей из-за геологии на территории или промышленности, местные стандарты «подгоняются» под ситуацию.

Что аргентинцу — ПДК, то немцу — превышение норм ВОЗ

Рассмотрим отличия стандартов на примере такой вредной примеси как мышьяк. Рекомендация Всемирной организации здравоохранения: содержание этого элемента в питьевой воде не должно превышать 0,01 мг/литр. Хотя лучше, чтобы его не было в воде совсем, ведь несколько лет назад мышьяк был официально признан ВОЗ канцерогеном.

ВОЗ: «Мышьяк в высоких концентрациях естественным образом присутствует в грунтовых водах целого ряда стран».

Еще в 1990-х гг. в Бангладеш было зафиксировано повсеместное присутствие мышьяка в колодезной воде. Национальный стандарт на мышьяк сейчас поднят до отметки 0,05 мг/литр. Тем не менее, и сегодня десятки миллионов жителей страны подвергаются риску воздействия мышьяка в концентрациях, значительно превышающих 0,05 мг/литр. Похожую природную аномалию ВОЗ отмечает в Аргентине, Камбодже, Чили, Китае, Венгрии, Мексике, Румынии, Таиланде, США и Вьетнаме. В частности, власти Аргентины даже по итогам жарких дебатов и пятилетних поисков решения, увы, так и не нашли способ обеспечить снижение национального стандарта на мышьяк с 0,05 мг/литр до рекомендуемых ВОЗ 0,01 мг/литр. image Но и ВОЗ не всегда права. Некоторые регионы мира страдают от избыточного содержания меди. Следствием активного использования меди и ее сплавов в водопроводном деле стали высокие национальные ПДК на медь в нашей стране, в США (1 мг/л) и в Германии (2 мг/л). Рекомендация ВОЗ, тем не менее, лояльна и не снижает эту планку, несмотря на то, что и 1 и 2 мг/л — это очень, очень много. image Похожая ситуация с алюминием. Рекомендации не очень строги: соли алюминия используют для коагуляции в процессе муниципальной очистки воды, поэтому превышение ПДК наблюдается повсеместно. И отказаться нельзя, и присутствие вредно. За последнее десятилетие ПДК на алюминий снизилась, но актуальные цифры могут показаться дикими нашим внукам. image Санитарные нормы несовершенны, постоянно ужесточаются, и не стоит относиться к ним, как к истине в последней инстанции. Просто помните: свинец, мышьяк и алюминий не становятся менее токсичными от того, что присутствуют в пределах ПДК. Муниципальная подготовка воды нигде в мире не имеет задачи подать в кран «максимально чистую» воду. Это оправдано тем, что большая часть воды сливается в канализацию, минуя наши желудки. В водопровод подается безопасная и разумно дешевая вода, которая не отравит, если ее случайно проглотить в душе или выпить от безысходности после бурной вечеринки. Поэтому держим в уме:

Вода, соответствующая СанПиН, — «питьевая». Однако, положа тестовый образец в анализатор руку на сердце, не такая уж и чистая для длительного использования в качестве питьевой. Это первая ступень в «рейтинге питьевых вод», ниже которой находятся жидкости, которые пить без доочистки опасно.

Вернемся к нашим попугаям

А точнее — к примесям в питьевой воде. Часть веществ не мешают ей оставаться безвредной, ухудшая при этом её органолептические свойства. Так ведут себя карбонаты кальция, магния, хлорид натрия, фосфаты, сульфаты. Правда, они проявляют свой характер, когда концентрации достаточно велики. Пусть это будут яркие, крикливые, но безобидные попугаи. Часть веществ — ксенобиотики, яды в любой своей форме и при любой концентрации. Это свинец, ртуть, хром, мышьяк, хлорорганические соединения и многие другие вещества. Как мы уже выяснили, их концентрация в водопроводной воде определяется как нашими возможностями в очистке, так и внешними факторами. Они опасны, портят жизнь не сразу, но делают это эффективно, например, провоцируя возникновение и развитие раковых опухолей. Пусть это будет тихий, но опасный удав. Как компания — производитель фильтров, мы постоянно получаем «претензии» покупателей, которые оценивают работу фильтра по скорости появления накипи. То есть заметные и яркие органолептические свойства воды — жесткость и минерализация — зачастую воспринимаются как главный критерий качества очистки.

Применение TDS-метра, безусловно, поможет «экспериментатору» провести оценку размера стаи попугаев и даже понять, что их примерно 38. Однако удава за ними он уже не разглядит.

image Основная задача фильтров для воды — защита от токсичного коктейля из остатков хлора (хлор — это яд), его органических производных и отходов промышленных и сельскохозяйственных предприятий: фенолов, нитратов, пестицидов, тяжелых металлов и так далее. В зависимости от модели, фильтры могут дополнительно защищать от бактерий, вирусов, аллергенов, антибиотиков и сотен других скрытых угроз. Выше мы обсудили, что нет единых мировых стандартов на примеси в питьевой воде. В этом свете измерительные шкалы, которые мы наблюдаем в многочисленных роликах о TDS-метрах, тем более кажутся красочной маркетинговой абстракцией. Пример типичной иллюстрации: Похожие иллюстрации путешествуют из ролика в ролик, сообщая, что образцы с пометкой “от 400” уже непригодны для питья. Любопытно, что автора типичного теста на youtube не удивляет цифра 4500 в стакане весьма полезной минеральной воды уважаемого российского бренда. Минерализация — физико-химический параметр водного раствора, такой же, как, например, его температура. Конечно, даже температуру можно считать параметром качества воды, когда отпуск короткий, а вода в море прохладная. Или когда очень хочется пить, но вода только что вскипела. С минерализацией тоже все относительно и зависит от конкретных условий.

Минерализация — такой же «критерий» качества воды, как и её температура. Этот показатель для пресной воды не относится к токсическим и не является загрязнением.

Использование воды разной минерализации — вопрос привычки. Жители меловых холмов или те, кто вырос у берега моря, где подземные воды тоже соленые (привет, Евпатория!), пьют такую воду каждый день. СанПиН и ВОЗ допускают общую минерализацию (по сухому остатку) не выше 1 г на литр (1000 ppm). Сакрального же смысла в знании того, что общая минерализация вашей воды это 100 или 1000 единиц по TDS-метру нет. С точки зрения бытовых неудобств — это неэстетичный осадок в чайнике, порча дорогих водонагревающих приборов (бойлер), невкусный чай и сухая кожа. Но это очевидно и без гаджета.

Почему качество воды после умягчающих проточных фильтров бессмысленно измерять TDS-метром

Максимально эффективен в борьбе с растворенными примесями только обратноосмотический фильтр. Принцип его устройства отличается от проточного фильтра благодаря присутствию специальной мембраны. Именно она разделяет водопроводную воду на очищенную и концентрат примесей, который сливается в дренаж. Сорбционный (то есть проточный) водоочиститель не сможет «удалить» из воды соли, в том числе и ионы кальция или магния. Умягчающий вариант проточного фильтра имеет ионообменный модуль, который обеспечивает замену ионов кальция и магния на ионы натрия (реже — водорода), которые не выпадают в осадок при кипячении.

Изменение показаний TDS-метра после прохода воды через ионообменный модуль проточного фильтра непредсказуемо. Одни ионы меняются на другие, как при этом изменится электропроводность, рассчитать очень сложно. Колебания происходят как в большую, так и в меньшую сторону.

Причин может быть множество. В частности, в процессе ионного обмена кальций и магний меняются на натрий. Кальций — это двухзарядный ион, натрий — однозарядный. Так на место одного кальция выходит два иона натрия.image А также:

  • важна не только зарядность, но и подвижность ионов, она у элементов также разная;
  • подвижность ионов и скорость переноса заряда сильно зависит от качественного окружения, например, от того какие вокруг анионы;
  • концентрация примесей также важна и влияет на конечное изменение электропроводности;
  • даже температура образцов воды способна повлиять на разницу показаний, обеспечив разницу до сотни единиц.

Без количественного и качественного анализа воды до ионного обмена невозможно предсказать, как изменится истинное значение TDS и электропроводность. А значит, идея измерять TDS после сорбционного фильтра — бессмысленна.

Устройство и истинное имя TDS-метра

Единственно верный метод измерения TDS (total dissolved solids) — это выпаривание и взвешивание. А то, что производители называют TDS-метрами, на самом деле — кондуктометры. Крайне упрощенная схема работы кондуктометра:

  1. Два электрода разделены изолирующим промежутком (воздух).
  2. На электроды подается известный потенциал (напряжение).
  3. Когда в зазор между ними попадает проводящая среда (вода с растворенными веществами), измеряется величина тока, который протекает между электродами.

Вода без примесей (чистая): A. имеет высокое сопротивление и низкую проводимость; B. в ней мало ионов (носителей электрического заряда); C. когда в неё попадают электролиты (чистую воду посолили), образуются носители заряда — ионы, которые повышают её электропроводность, так как являются переносчиками электрического заряда. image Растворимые неэлектролиты, присутствующие в воде, не добавят воде электропроводности, т.е. кондуктометрический TDS-метр, погруженный в сладкий чай, заваренный на дистиллированной воде, покажет крайне низкое значение, но при выпаривании воды и взвешивании значение сухого остатка будет высоким. TDS (total dissolved solids) означает массу твердого остатка, которая получится, если всю воду испарить. В твердом остатке останутся и растворимые электролиты (соли, кислоты, основания), и растворимые неэлектролиты, и нерастворимые твердые вещества (песок, глина), чья совокупная масса и называется в химии TDS. Кстати, в отечественной терминологии есть термин «общее солесодержание», который гораздо точнее отражает величину, которую измеряет кондуктометр. TDS-метр чаще всего отградуирован по хлориду натрия. Поэтому если ионный состав тестируемой воды отличается от хлоридно-натриевого (очень жесткая вода, содержащая ионы кальция/магния и гидрокарбонат-ионы), то и оценки солесодержания в ppm, пересчитанные по хлоридно-натриевой градуировке, будут очень приблизительными. В питьевой воде хлорид натрия редко является доминирующим компонентом. Из макро-катионов есть ионы кальция, магния, калия и т.д. Из анионов — хлорид-, сульфат-, карбонат/гидрокарбонат-, силикат-, фосфат- и т.д. Все они с разной подвижностью переносят электрический заряд. А значит, про TDS-метр в строгом смысле нельзя сказать, что он измеряет «жесткость воды», «концентрацию солей» или, боже упаси, «загрязненность воды». Единственное, что можно о нем сказать, — он выдает на дисплее выраженную в ppm (мг/л) эквивалентную концентрацию раствора хлорида натрия температурой 25 С, которая даст ту же величину электропроводности, которую прибор зафиксировал здесь и сейчас. В видео наглядно объясняем, какие жидкости, кроме раствора солей, дают запредельный ppm, как температура воды влияет на точность измерения, а также проводим эксперимент с инсектицидом, который не является электролитом. А в «сухом твердом остатке» на тему TDS-метра мы имеем:

Что TDS-метр не умеет

1. С помощью одного только TDS-метра вы не определите чистоту и безопасность водопроводной воды или любого другого раствора, так как:

  • не все вещества-электролиты опасны;
  • не все опасные вещества являются электролитами, а значит остаются невидимыми для TDS-метра.

2. Качество работы сорбционного водоочистителя TDS-метром определить тоже не получится, поскольку такой тип фильтра не всегда меняет минеральный состав воды.

Когда TDS-метр полезен

1. TDS-метр поможет прикинуть общую минерализацию воды в случаях, когда стоит вопрос об установке фильтра, принцип работы которого основан на изменении минерального состава воды (обратный осмос). 2. TDS-метр поможет понять, когда в обратноосмотическом фильтре пора менять мембрану или же её ресурс пока достаточен. При замене мембраны это отличный способ проверить, есть ли в ней брак. 3. А еще замеры разных жидкостей TDS-метром — это отличный способ провести время с детьми и повод рассказать им о том, что такое электропроводность и почему измерять удава в попугаях весело, хоть и не практично.

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
А как считаете Вы?
Напишите в комментариях, что вы думаете – согласны
ли со статьей или есть что добавить?
Добавить комментарий